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Prefácio 
 
As IX Jornadas sobre Sistemas Reconfiguráveis decorrem em Coimbra, no Instituto de Sistemas e 

Robótica - Universidade de Coimbra (ISR-UC), nos dias 7 e 8 de Fevereiro de 2012. Esta edição 

vem na continuação de uma sequência de eventos que teve início na Universidade do Algarve, em 

2005, com edições anuais posteriores na Faculdade de Engenharia da Universidade do Porto 

(2006), no Instituto Superior Técnico da Universidade Técnica de Lisboa (2007), no Departamento 

de Informática da Universidade do Minho (2008), na Faculdade de Ciências e Tecnologia da 

Universidade Nova de Lisboa (2009), na Universidade de Aveiro (2010), Faculdade de Engenharia 

da Universidade do Porto (2011) e no Instituto Superior de Engenharia de Lisboa (2012). As 

Jornadas têm conseguido constituir-se como o ponto de encontro anual para a comunidade 

científica de língua portuguesa com reconhecida atividade de investigação e desenvolvimento na 

área dos sistemas eletrónicos reconfiguráveis. 

O programa das IX Jornadas – REC 2013 – tem uma estrutura semelhante às edições anteriores, 

decorrendo durante dia e meio. Este ano, as Jornadas incluem três apresentações convidadas 

focando diferentes domínios de utilização das FPGAs, tanto ao nível da investigação como do 

desenvolvimento industrial. Dado o trabalho do ISR-UC na área da visão por computador e 

robótica, pretendeu-se incluir um tópico mais focado nesta área. Assim, na primeira apresentação 

contamos com Julien Dubois, Maître de conférences da Université de Bourgogne, em Dijon, 

França, e membro do LE2I, Laboratoire d’Electronique, Informatique et Image, que abordará a 

utilização de hardware configurável em câmaras inteligentes para aplicações em ambientes 

industriais. A segunda apresentação está a cargo de Ricardo Chaves, investigador do grupo capa - 

Computer Arquitectures & high Performance Algorithms - do INESC-ID e professor auxiliar do 

Instituto Superior Técnico da Universidade de Lisboa, que abordará o tema da segurança em 

sistemas reconfiguráveis e implementação de sistemas de segurança com sistemas reconfiguráveis. 

A terceira apresentação será proferida por António Costa e por Miguel Falcão, gestores de I&D da 

Synopsis Portugal, que abordarão o tema da utilização de plataformas reconfiguráveis para 

prototipagem de controladores HDMI e MIPI. A todos agradecemos a disponibilidade para 

partilharem com os participantes da REC 2013 as suas experiências e conhecimentos. 

O programa conta ainda com a apresentação de 15 comunicações regulares nas áreas da 

reconfiguração dinâmica, arquiteturas para processamento de alto débito, arquiteturas 

multiprocessamento, interfaces de comunicação, plataformas experimentais e educativas, bem 

como algumas novas abordagens ao projeto de sistemas reconfiguráveis. Estas contribuições foram 

todas aprovadas para apresentação e publicação pelo Comité Científico. Todas as contribuições 

foram sujeitas a três revisões, num total de 45 revisões. 
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A organização destas Jornadas contou com o apoio de diversas pessoas e entidades, às quais 

gostaríamos de expressar o nosso agradecimento. Em primeiro lugar devemos um agradecimento 

especial aos autores que contribuíram com os trabalhos incluídos nestas Actas, bem como aos 

membros do Comité Científico pelo excelente trabalho produzido, concretizado em revisões que, 

estamos certos, permitiram melhorar a qualidade dos trabalhos submetidos. 

Igualmente os nossos agradecimentos ao Instituto de Sistemas e Robótica – Universidade de 

Coimbra, pelo imprescindível apoio concedido à organização destas Jornadas através da 

disponibilização de meios logísticos e administrativos. 

Esperamos que esta edição das Jornadas constitua, uma vez mais, um espaço para divulgação e 

discussão dos trabalhos apresentados, bem como de convívio aberto a todos quantos partilham 

interesses na área dos sistemas eletrónicos reconfiguráveis, e contamos vê-los a todos nas jornadas 

do próximo ano. 

 

Jorge Lobo, ISR – Universidade de Coimbra  

Manuel Gericota, Instituto Superior de Engenharia do Porto 
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FPGA-Based Smart Camera for industrial 
applications 

 
Julien Dubois  

LE2I (Laboratoire d’Electronique, Informatique et Image) – CNRS 
Université de Bourgogne 

Dijon - França 
 

 
For the last two decades, smart cameras have been offering innovative solutions for industrial 

vision applications. This kind of system associates a flexible image acquisition with high-speed 

processing possibilities. Many smart camera designs are based on FPGA components to obtain 

these two features. Indeed, the FPGA enables the CMOS sensor to be controlled and therefore to 

propose a configurable acquisition according to the application constraints (i.e. dynamic 

windowing). The configurable structure of an FPGA represents a key advantage for modifying the 

embedded processing (even on-the-fly using dynamic reconfiguration). Additionally, FPGA 

components offer a large number of hardware resources, such as multipliers or embedded memory 

blocks, which enable complex image processing to be implemented and to be performed in real-

time. Designers can even consider increasing the spatial image resolution and/or the frame-rate due 

to the FPGA technology improvements. The new solutions on the prototyping tools as well as the 

modelling languages available for FPGA design should be considered. Indeed, design methods 

based on High-Level Synthesis (HLS) enable the time to market to be significantly reduced. 

Moreover, these improvements enable gains on the smart camera design to be obtained, as for 

instance quick HW/SW implementations or quick communication interface integrations.  

After a general presentation of the smart camera structure, the Le2i laboratory’s experience on 

smart camera designs will be used to highlight these gains. The high processing capacities of an 

FPGA component at high frame rates, with high resolution images, will be demonstrated The 

presentation of the impact of co-processing on the smart camera performances, followed by a 

description of a new data-flow formalism, which enables quick prototyping of HW/SW 

implementations including communication interfaces to be automatically obtained, will be 

proposed. Finally, a configurable system supporting automatic video compression adaptation in 

function of event detection will be presented. 

 

Keywords : smart camera, configurable systems, co-processing, High-Level Synthesis, 

communication interfaces 
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Secure computation using reconfigurable 
systems 

 
Ricardo Chaves 

INESC-ID / IST 
TULisbon 

 
 

With the vast expansion of electronic systems and digital information usage, an increasing demand 

from applications and users for secure and reliable computing environments arises. To deal with 

this demand, several mechanisms are being developed at different levels in computing and 

communications systems, namely at protocol, architectural, and algorithm levels. 

An emerging new requirement to security systems is flexibility in terms of fast adaptation to new 

protocols, algorithms, and newly developed attacks. To provide this flexibility and adaptability 

while maintaining an adequate performance, the usage of reconfigurable devices, such as FPGAs, 

are of key importance. 

Recent FGPAs have the additional advantage of enabling dynamically partial reconfiguration. 

However, this raises another security issue since it must be assure that whatever is being loaded 

into the reconfigurable device is in fact being loaded into the intended location and that once 

loaded it will behave as expected. 

This presentation will discuss how the computation of security protocols and algorithms can be 

improved with the use of reconfigurable devices and how these reconfigurable devices can be 

securely used. 
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Synopsys HDMI and MIPI Prototyping 
Platforms 

 
António Costa, Miguel Falcão 

R&D Managers 
Synopsys 

Maia 
 

 

One of the key components of Synopsys products are microelectronics sub-systems that are 

acquired by most of the semiconductors top vendors for integration in their SOC. These subsystems 

are commonly called IPs (for Intellectual Property) and Synopsys is the worldwide lead vendor of 

interface IP that includes popular standards such as USB, PCIe, DDR, SATA, HDMI, MIPI, etc... 

HDMI and MIPI Controllers and PHY IPs are developed at Synopsys Portugal - Porto site. The 

quality of Synopsys IPs is worldwide recognized and such success is due to the quality of the 

design, verification and test flows. 

The test flow requires prototyping these protocols in Synopsys laboratories where protocol 

controllers are prototyped in FPGA and connected to Synopsys PHYs implemented in real foundry 

silicon testchip. Prototyping is the ultimate verification and proof of the quality and robustness of 

the IP. It assures that our customer will receive a fully functional product when integrating it in 

their chips The importance of FPGA-based HAPS Prototyping activities is huge due to the impact 

it has in the business. 

FPGA-based HAPS Prototyping platforms for HDMI and MIPI IP, its usages (both technical and 

business-oriented), past and future challenges and solutions will be presented. 

 

http://www.synopsys.com 
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Using FPGAs to create a reconfigurable IEEE1451.0-compliant 
weblab infrastructure 

 
Ricardo Costa12, Gustavo Alves1 and Mário Zenha-Rela2 

ISEP/CIETI/LABORIS1, FCTUC/CISUC2 
rjc@isep.ipp.pt, gca@isep.ipp.pt, mzrela@dei.uc.pt  

 
 
 

 

Abstract 
The reconfiguration capability provided by Field 

Programmable Gate Arrays (FPGA) and the current 
limitations of weblab infrastructures, opened a new 
research window. This paper focus on describing the 
way weblabs can be reconfigured with different 
Instruments & Modules (I&M) required to conduct 
remote experiments, without changing the entire 
infrastructure. For this purpose, the paper 
emphasizes the advantage of using FPGAs to create 
reconfigurable weblab infrastructures using the 
IEEE1451.0 Std. as a basis to develop, access and 
bind embedded I&Ms to an IEEE1451.0-Module. 

 

1. Introduction 
In the electronic domain reconfiguration is 

becoming a familiar word since the appearance of 
FPGAs. These provide the ability of redefining an 
architecture based on a set of internal modules that 
can be interconnected according to a set of rules 
described by standard Hardware Description 
Languages (HDL). This means reconfiguring the 
device, and therefore the way it runs, without 
replacing its main hardware. This flexibility 
provided by FPGAs can be viewed not only as a 
thematic of study in engineering courses, but also as 
devices able to create the so-called weblab 
infrastructures, by the implementation of 
sensors/actuators that can be the I&Ms required to 
use in a remote experiment [1]. 

Weblabs allow the remote conduction of 
laboratorial experiments, providing a way for 
teachers and students to access real equipment, 
provided by an infrastructure, using a simple device 
connected to the Internet. Since the 90’s that 
weblabs are proliferating in education, especially in 
engineering and science disciplines [2][3][4][5] 
where laboratorial work is fundamental [6][7]. This 
is justified essentially by the flexibility they provide 
on accessing, without time and place constrains, the 
equipment commonly available in a laboratory, 
which comprehends a set of I&Ms connected to an 
Experiment Under Test (EUT). Noticeably, the 
implementation of weblabs in different institutions 
can be increased if improving their infrastructures, 

namely by: i) enabling their reconfiguration (only 
setting up connections of predefined I&Ms is 
currently allowed [8]) and, ii) adopting a standard 
solution for their implementation and access. 
Despite these two problems are being debated in the 
GOLC technical committee [9], currently there is 
not yet a solution to solve them. While the standard 
access to a weblab infrastructure can be overcome 
by the use of a common API, infrastructural and 
reconfiguration aspects are still unsolved. It is 
precisely in this scenario that the reconfigurable 
nature of FPGAs and the use of a standard approach, 
can contribute to overcome the two referred 
problems.  

Adopting FPGAs as the main device of a weblab 
infrastructure allow reconfiguring, in its core, a set 
of embedded I&Ms that, if described through 
standard HDL files, can be shared by the entire 
educational community. At the same time, if these 
same I&Ms follow a specific standard, they will be 
easily shared, integrated and accessed, promoting 
more collaboration among institutions in the 
development and dissemination of weblabs. 

Therefore, for promoting a high widespread of 
weblabs in education, this paper proposes joining the 
capabilities provided by the reconfigurable nature of 
FPGAs, to the large focus provided by the 
IEEE1451.0 Std., that allows defining and network-
interfacing transducers, which can be the referred 
I&Ms. The paper describes the implementation of a 
generic and synthesizable IEEE1451-Module for 
FPGA devices, and a methodology to develop, 
access and bind I&Ms compatible with this module.  

Section 2 provides an overview about the 
IEEE1451.0 Std., and presents the weblab 
infrastructure implemented at our laboratory. Section 3, 
presents the IEEE1451.0 Std. and the IEEE1451.0-
Module, this entirely described in the standard Verilog 
HDL. Section 4, describes the process of creating and 
binding I&Ms to that IEEE1451-Module, so they can 
be used by the weblab infrastructure to conduct 
experiments. Section 5 explains the reconfiguration 
process of the weblab infrastructure, and section 6 
concludes this paper and presents ongoing work. 
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2. Weblab infrastructure overview 
The IEEE1451.0 Std. [10] aims to network-

interface transducers through an architecture based 
on two modules: the Transducer Interface Module 
(TIM), that controls Transducer Channels (TC), and 
the Network Capable Application Processor 
(NCAP), that provides network access to the TIM 
and to those TCs. The behaviour and features of a 
TIM and TCs are described by Transducer 
Electronic Data Sheets (TEDS) monitored by a 
status register and controlled by a set of commands 
that may be accessed by an IEEE1451.0 HTTP API. 

As illustrate in figure 1, the implemented 
infrastructure uses the NCAP implemented in a 
micro webserver, connected by a serial RS232 
interface to the TIM. This is implemented in a 
FPGA-based board that provides a set of interfaces 
(digital I/O, DAQs, etc.) to access a specific 
Experiment Under Test (EUT). Internally, the 
adopted FPGA is reconfigured by a generic 
IEEE1451.0-Module that, by decoding a set of 
commands received from the NCAP, controls TCs 
and therefore, the embedded I&Ms bound to it. To 
run remote experiments, users remotely access these 
I&Ms, that are connected to the EUT, using the 
IEEE1451.0 HTTP API implemented in the NCAP. 

 

 
Fig. 1. Implemented weblab infrastructure. 

 
While standardization is guaranteed by the 

adoption of the IEEE1451.0 Std., the use of an 
FPGA for implementing the TIM is fundamental, 
since it can be reconfigured with I&Ms required for 
a specific experiment, and these can run 
independently and in parallel, like in a traditional 
laboratory.  

Therefore, seeking for a flexible and 
reconfigurable solution, the TIM was entirely 
described in Verilog HDL, which guarantees its 
portability towards any kind of FPGA. Internally the 
IEEE1451.0-Module implements all features 
described by the standard, controlling the TCs used 
to access the embedded I&Ms. The adoption of this 
architecture required the TIM description supported 
in two fundamental aspects: i) the IEEE1451.0-
Module is able to be redefined according to the 
adopted I&Ms and, ii) each I&M is described 
through a set of files following a specific 
methodology. 

3. IEEE1451.0-Module 
Entirely described in Verilog HDL, as illustrated 

in figure 2, the IEEE1451.0-Module internally 
comprehends 4 other modules:  

1- Decoder/Controller Module (DCM) - is the 
Central Processing Unit (CPU) that controls all the 
other modules, by decoding commands received 
from an Universal Asynchronous Receiver / 
Transmitter Module (UART-M) or by the reception 
of event signals generated by I&Ms.  

2- TEDS Module (TEDS-M) - comprehends an 
internal controller able to access TEDSs. 

3- Status/State Module (SSM) - manages the 
operating states and the status registers of each TC 
and TIM. 

4- UART Module (UART-M) - interfaces the 
NCAP and the TIM through a RS232 interface using 
receiver/transmitter modules (Rx/Tx). 

 

 
Fig. 2. Internal modules of the IEEE1451.0-Module. 

 
The DCM controls the entire IEEE1451.0-

Module by implementing the following features: i) 
provides IEEE1451.0 commands defined through a 
set of command-tasks, ii) implements error detection 
mechanisms, iii) controls both the SSM and the 
TEDS-M by reading, writing or updating their 
internal memories using a set of commands provided 
by dedicated hardware APIs, iv) controls the UART-
M used to establish the NCAP-TIM interface, and 
iv) controls a set of embedded TC-tasks that manage 
the TCs, running as actuators, sensors or event 
sensors. The DCM provides a set buses that 
interfaces the TEDS-M, SSM and I&Ms, the UART-
M to receive/transmit commands from/to the NCAP, 
and two external memories that support the 
operations of the DCM, named Memory Buffer 
(MB) and Map Table (MT). The MB gathers 
temporary TEDS’ fields before they can be written 
into a TEDS’s memory provided within the TEDS-
M. It also acts as a data-bridge to Data Sets (DS), 
which are available in each I&M to hold internal 
data sent or received by IEEE1451.0 commands. 
The MT implements a table to associate each TEDS, 
defined in the TEDS-M, to a particular TC or TIM, 
according to a specific Identification Field (ID). 
Defined during a reconfiguration process described 
in section 5, it is based on this association that the 
DCM may understand which TEDS should be 
accessed after a reception of command. 
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The TEDS-M integrates all TEDSs adopted by the 
infrastructure, including those associated to a 
particular I&M, to the TIM and/or to TCs. This 
module comprehends an internal controller that 
provides particular commands to write, read or 
update each TEDS. To facilitate the access to those 
commands, the TEDS-M provides a hardware API, 
that can be used by the DCM, namely by command-
tasks that implement IEEE1451.0 commands, and by 
TC-tasks that manage the interface between the 
I&Ms and the DCM.  

The SSM provides access to two independent 
memories whose contents specify the operation 
states and the status of the TC/TIM. During the 
DCM operation, those memories will be accessed by 
command/TC-tasks to update the state and the status 
of each TC/TIM. The access to those memories is 
made using a set of commands provided by an 
internal controller, whose access can also be made 
by a hardware API. 

The UART-M is controlled by the DCM using a 
handshake protocol that manage a set of signals to 
access two internal buffers and to control all data 
flow during transmissions. Structured in internal 
modules, the UART-M also implements a 
mechanism for validating and creating data 
structures according to the IEEE1451.0 Std.. 

In order to fulfill the reconfigurable requirements 
of the weblab infrastructure, besides using FPGA 
technology, the IEEE1451.0-Module was described 
through a set of Verilog HDL files some of them 
redefined according to the I&M adopted for a 
particular experiment. Moreover, its automatic 
redefinition, that is a part of the reconfiguration 
process, required the use of a specific architecture 
for developing and binding I&Ms, so they can be 
compatible with the IEEE1451.0-Module and 
therefore, able to be accessed according to the 
IEEE1451.0 Std.. 

 

4. Compatible Instruments & Modules 
To bind I&Ms to the IEEE1451.0-Module, these 

should be designed in different parts. These parts 
include one or more modules bound through TC 
lines to a set of TC-tasks, which are described in 
Verilog HDL and embedded in the DCM. As 
illustrated in figure 3, these tasks allow the access to 
the other modules and the interface between the 
IEEE1451.0-Module and each I&M, enabling their 
control according to TEDSs’ contents that should 
also be defined by the developer. The number of 
TCs depends on the I&M’s architecture and the 
parameters to be controlled. 

Therefore, the design of an I&M compatible with 
the IEEE1451.0-Module comprehends an 
architecture divided in 3 distinct parts: i) HDL 
modules describing the I&M itself, ii) TC-tasks to 
control and interface those same modules with the 

DCM; and iii) TEDSs to define the behaviour of the 
entire IEEE1451.0-Module and of each TC. An I&M 
is accessed by one or more TCs controlled by TC-
tasks managed according to the data available within 
TEDSs and status/state memories. Since I&Ms’ 
developers need to define both the TC-tasks and the 
HDL modules, they can adopt any type of handshake 
protocol to exchange data between the DCM and the 
I&Ms. Some TC-tasks are optional others 
mandatory, and they are responsible to automatically 
access the TEDS-M, the SSM, in some situations the 
UART, and the MB, when the IEEE1451.0-Module 
receives event signals or IEEE1451.0 commands. 

 

 
Fig. 3. Parts required for defining I&Ms compatible with 

the IEEE1451.0-Module. 

 
To simplify the design of an I&M, each TC-task 

accesses those modules using the hardware APIs, 
facilitating this way their description and 
independence toward the specificities of the DCM 
implementation. They should be defined according 
to the adopted TC, so the DCM may automatically 
use them to handle received commands or events 
generated by I&Ms. The number of adopted TCs 
depends on developers’ options that should take into 
consideration the parameters to control in an I&M, 
the TEDS’s definitions, and the resources available 
in the FPGA. Therefore, the development of an I&M 
compatible with the IEEE1451.0-Module should 
follow the sequence presented in figure 4. 

 

 
Fig. 4. Sequence for implementing an I&M compatible 

with the IEEE1451.0-Module. 
 

Developers should start by evaluating the 
requirements and features of the I&M they want to 
develop, estimating its complexity to understand 
what modules should be described. For that purpose, 
the outputs and inputs connected to the EUT should 
be selected, namely the associated signals, which are 
managed by I&Ms’ parameters controlled by TCs. 
After selecting the inputs/outputs and the parameters 
to be controlled, developers should define the 
number of TCs. This definition should be made 
according to the type of parameters to control and 
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the requirements posed to the FPGA device, since 
the use of several TCs may require many FPGA 
resources. Once selected the TCs used to access the 
I&M, developers should define the TEDSs to 
describe the TIM architecture and the TCs’ 
behaviour that, among other definitions, specifies if 
a TC acts as an actuator, a sensor or as an event 
sensor. Current solution suggests that at least the 
TC-TEDS should be defined for each TC, but 
developers may define others TEDSs, as described 
by the IEEE1451.0 Std.. The way those TCs are 
controlled is made by a set of predefined TC-tasks 
described by the developer, so they can provide the 
interface to the other modules within the 
IEEE1451.0-Module. To simplify developments, the 
hardware APIs provided by the TEDS-M and the 
SSM should be used with the protocol adopted to 
control the data transmission/reception of the 
UART-M. After all these definitions, a specific I&M 
is available to bind to the IEEE1451.0-Module using 
a reconfiguration process. 

 

5. Reconfiguration 
After describing the I&Ms, these can be bound to 

the IEEE1451.0-Module so they can be used in a 
specific experiment. For this purpose, the 
infrastructure, namely the TIM, should be 
reconfigured, which means changing the internal 
connections of the FPGA. This reconfiguration 
process involves a set of steps described in figure 5, 
currently supported by a specific web 
reconfiguration tool already detailed in [11]. 

 

 
Fig. 5. Weblab infrastructure reconfiguration sequence. 

 
This tool is available in a remote machine named 

Labserver that runs the entire reconfiguration 
process. Internally this machine integrates a set of 
software modules and, in particular, the 
IEEE1451.0-Module that will be redefined 
according to the selected I&Ms and to some 
configuration rules. For this purpose, users should 
start selecting two groups of files. The first group 
describing each I&M, and the second group 
describing all changes to be made in the TIM and in 
the IEEE1451.0-Module, so it may bind the selected 
I&Ms. The TIM, and in particular the IEEE1451.0-
Module, is then redefined according to the rules 
defined in a configuration file, and a new HDL 
project will be created and synthesized to the 
selected FPGA using the tool associated to its 
manufacturer. A bitstream file is then created and 
sent to the FPGA, reconfiguring the weblab 
infrastructure to run the specified experiment.  
 

6. Conclusions and ongoing work  
The use of FPGAs is a promising solution for 

developing reconfigurable weblab infrastructures. 
This document emphasized this aspect, presenting 
current weblabs problems, and the way these can be 
solved by joining the IEEE1451.0 Std. basis with 
FPGA technology. The development of a 
reconfigurable, flexible and universal solution at low 
prices, is the main objective of the described work. 
In the next months a prototype experiment based on 
step-motors will be validated by some specialist in 
the area. The goal is to get feedback about the 
implemented infrastructure and the methodology for 
reconfiguring the weblab infrastructure. In the 
future, the intention is to enlarge the offer of 
compatible I&Ms, so other experiments can be 
designed. For further details, readers are invited to 
visit the webpage: www.dee.isep.ipp.pt/~rjc/phd.  
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Abstract

This paper presents a demonstrator for partial reconfig-
uration of FPGAs applied to image processing tasks. The
main goal of the project is to develop an environment which
allows users to assess some of the advantages of using dy-
namic reconfiguration. The demonstration platform is built
around a Xilinx Virtex-5 FPGA, which is used to implement
a chain of four reconfigurable filters for processing images.
Using a graphical interface, the user can choose which fil-
ter goes into which reconfigurable slot, submit images for
processing and visualize the outcome of the whole process.

1. Introduction

Partial dynamic reconfiguration consists in adapting
generic hardware in order to accelerate algorithms or por-
tions of algorithms. It is supported by a General-Purpose
Processor (GPP) and reconfigurable hardware logic [1].
The processor manages the tasks running in hardware and
the reconfiguration of sections of the FPGA. In addition, it
also handles the communication with external devices.

It is expected that this technology will be more and more
present in everyday devices. Therefore, it is important to
introduce reconfigurable computing to electronic and com-
puter engineering students. The goal of the project is to
build a tool to support teaching the fundamentals of dy-
namic reconfiguration, as a starting point for students to
experiment and be motivated to begin their on research on
this field. To emphasize the dynamic reconfiguration oper-
ations, a system capable of processing images was imple-
mented. In this way the user can easily visualize the results
of the whole process.

The basic hardware infrastructure contains a processing
chain with four filters working as reconfigurable partitions
of the system. In regular operation, images flow through
the four filters in sequence. To select the filters and to visu-
alize the results of the selected operation, a remote graph-
ical user interface was implemented in the Java program-
ming language. This interface allows the user to send re-
configuration orders to the board in which the system is
implemented. The user is able to visualize the original sub-
mitted image and the result after the process. As this appli-
cation emphasizes the advantage of using dynamic recon-
figuration, the remote user interface also shows some per-

formance indicators. The system can be used in two differ-
ent ways: a basic use and an advanced use. In the first one,
the user only uses the graphical interface and the available
filter library. An advanced user can expand the system by
developing and implementing new filters following a guide
that describes the design flow and the rules for a successful
implementation.

The board chosen for the implementation of the system
was the Xilinx ML505, which has a Virtex-5 FPGA [2].
The on-board software to control the reconfiguration pro-
cess and the image processing tasks runs on a soft-core pro-
cessor (MicroBlaze) inside the FPGA. This software was
developed using the Embedded Development Kit (EDK)
tool by Xilinx. The graphical user interface (GUI) runs in
any environment that supports the Java language.

This document describes the approach used and the re-
sults obtained in the development of this project, which is
mainly focused on a teaching context.The next section talks
about work that has been developed in the scope dynamic
reconfiguration on demand and dynamic reconfiguration
systems with teaching purposes. The other sections of this
article describe an overall view of the system (Sect. 3),
the approach of hardware that was developed (Sect. 4), the
strategies that were used to implement image filters (Sect.
5), the software that was developed for the whole system
(Sect. 6), and the results (Sect. 7). Section 8 presents some
conclusions.

2. Related Work

The use of dynamic reconfiguration is directly con-
nected with its ability to speed up computing. It has al-
ready been proved that this kind of technology is capable
of producing significant performance improvements in nu-
merous applications. Also, the use of dynamic reconfigu-
ration enables the reduction of the number of application-
specific processors inside a single device, opening the way
to weight and power consumption reductions in many ar-
eas, like for example a car or a cell phone.

In the scope of reconfiguration-on-demand, a project
was developed in 2004, whose main objective was to incor-
porate many car functionalities in a single reconfigurable
device [3]. As there was no need to have all the function-
alities working at the same time, the main approach was
to have them multiplexed to save energy efficiently. Algo-
rithms were developed to do the exchange between tasks
according to the run-time needs and energy efficiency con-
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siderations.
This project concluded that systems of this kind are vi-

able for the non-critical functionalities of a car, like air con-
ditioning, radio, and lights control. It was possible to have
four tasks working simultaneously in the FPGA and do ex-
changes with others as needed, without compromising the
purpose of any activity and saving power consumption and
space.

In the scope of demonstrating dynamic reconfiguration
of FPGAs for education proposes, a system was recently
developed whose main goal is to help students learn the
fundamentals of this technology, allowing them to do ex-
periments with a base system applied to video processing
[4]. This system consists of a video stream that runs from
a computer through a Virtex ML506 and back to the com-
puter. The bitstreams are loaded at start-up to the board’s
internal memory. There are two bitstreams available cor-
responding to two possible implementations for transcod-
ing the stream: up-scaling the stream to 256×256 pixels or
broadcasting the input video stream to four lower quality
receivers.

The downloading of the bitstreams into FPGA mem-
ory is done through the ICAP. In this specific project, the
student experience has two phases: elaborating and imple-
menting a C application to run on the MicroBlaze with the
goal of transferring the bitstreams for the board, and re-
ceiving and executing reconfiguration orders. The second
phase is about the user controlling the function, that is be-
ing executed in the board, by sending reconfiguration re-
quests through a serial connection.

In the system that we developed, the user has a graphical
interface in which he can choose and send reconfiguration
requests to the board and visualize the results before and
after processing.

3. Base System Overview

The implementation of the whole system has three parts:
software developed for the remote interface, software de-
veloped for the soft-core processor and the hardware in-
frastructure compsed of the reconfigurable areas and the
support hardware (CPU, DMA controller, ICAP, memory
interfaces). Figure 1 represents the information flow and
the modules used in the system. The reconfigurable hard-
ware module is called Img process. The communica-
tion between the interface and the board Virtex ML505 is
done using TCP/IP sockets.

The soft-core processor is the center and brain of the
system. It receives information and commands through the
Ethernet module and acts accordingly. Before being pro-
cessed, the image that the user sends, is stored on DDR2
RAM memory and then, when the image has been com-
pletely received, it is transferred to the processing module
Img process. This transfer is done with Direct Memory
Access (DMA) [5] module which, when the information is
processed, does the same operation in the reverse direction
as well.

The Img process module is pipelined and has the
four partitions connected in series. This means that four

Figure 1. System overview.

Figure 2. Top module Img process.v

slots, each one with the correspondent filter selected by the
user, are working simultaneously over successive bands of
the image. When the DMA transfers a portion of the image,
the module immediately starts processing and puts all pro-
cessed bytes in a output memory for the DMA to transfer
back again do DDR2 memory. This procedure is repeated
until the image has been totally processed.

The partial bitstreams to reconfigure Img process are
stored in a flash memory card. This card is read using the
SysAce module and the bitstream is sent to the Internal Ac-
cess Configuration Point (ICAP) [6] by the control program
running on the MicroBlaze processor. The ICAP is respon-
sible for writing to the FPGA memory reserved to partial
reconfiguration. All these modules are connected by the
Processor Local Bus (PLB) [7].

4. Image Processing Hardware

As figure 2 shows, the module Img process has four
sub-modules. These are all generated by Xilinx Platform
Studio when building the base system. They are respon-
sible for the reset of the system, and the communication
with the PLB bus. The interrupt control is not used in this
version of the project, but it was maintained for future de-
velopments.

The user logic.v module is where all the process-
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Figure 3. Implemented user logic block digram view.

ing logic is implemented. It is here that the four recon-
figurable partitions are instantiated as black-boxes. This
module receives collections of bytes with a rate which de-
pends on the performance of the DMA and MicroBlaze.
The transfer is done via PLB bus, hence with an input and
output of four bytes in parallel in every clock cycle.

The chain of filters receives one data byte at a time.
Therefore, it is necessary to convert the four bytes received
in parallel to a byte sequence (parallel-to-serial converter) .
There is also the need to aggregate the result information in
a 4-byte word to be sent to the DDR2 memory. Hence, se-
rialization and de-serialization modules were placed before
and after the filters chain respectively. Figure 3 shows a
more detailed view of the implemented user logic.v.

In addition to the modules already mentioned, the
img process module contains performance counters,
parameters, a stop process system, two FIFO memories,
a state machine and the sequence of reconfigurable filters.
The performance counters measure how many clock cycles
are needed to process the whole image. The parameters
block represents the registers used to store values intro-
duced by the user through the graphical interface. These
parameters are inputs of the user-designed filters and can
be used in many ways. For example, the input parameter
of one filter can be used as the threshold value. The two
FIFO memories are used to store received and processed
data. The finite state machine controls the whole opera-
tion: it has as inputs all the states of the other modules and
acts according to them. The stop module prevents the sys-
tem from losing data: when the Fifo OUT memory is full,
the system stops, or, when the Fifo IN is empty and the
last byte has not yet been received, the system stops. The
system resumes processing when Fifo OUT memory has

space available for storing new results and Fifo IN mem-
ory has new bytes to be processed.

The filter chain consists in four filters connected in se-
quence by FIFO memory structures. In overall there are
eight FIFO memories, two behind each filter, as Figure 4
shows. In a given filter, the most current line of the image,
is passed directly to the next filter and, at the same time,
is updating the middle FIFO memory. Also, the bytes that
were previously in the middle FIFO are entering the upper
FIFO memory. In this way, every time a line is processed,
the upper FIFO memory has the older line (N-2), the mid-
dle FIFO has the second to last line (N-1) and the most re-
cent line (N) enters the filter directly. This arrangement en-
sures that the filter block receives successive columns of a
three-line memory band. This means, that point operations
based on a 3×3 neighborhood can be easily implemented
in each filter block.

5. Partial Reconfiguration

5.1. Filter Development

As Fig. 4 shows, the system devised for this work al-
lows the user to include new image filters based on point
and neighbourhood (3×3) operations. Every filter devel-
oped for this infrastructure should have its inputs stored in
registers inside the filters. This will decrease the possibil-
ity of timing violations on place and route phase. Since the
filter has three inputs for bytes from three different image
lines, in order to perform local operations the filters should
register the incoming image byte, so that the three previous
bytes, from each line at a given moment, are stored.

Data must pass through the filters at the same rate as
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Figure 4. Single filter image process mechanism.

Figure 5. RTL schematic of a 3x3 operation window.

they enter the pipeline. Therefore, output calculations on a
3×3 window must also be done in a pipelined fashion, so
as to not stall the filter pipeline: in each cycle a new output
result must be produced. Hence, the operation is divided
in sequential parts with registers between them. This will
cause an initial delay at the output, but will not affect the
overall frequency of the system. Instead, it will enable the
utilization of higher frequencies and decrease timing viola-
tions such as hold and setup times.

To implement a 3×3 window like the one shown in Fig.
4, it is necessary to have nine bytes available at a given
clock cycle. Hence, nine registers grouped in three shift
chains are needed. Figure 5 shows how this arrangement
is translated into an RTL schematic. At each cycle, the
data for calculations related to the middle pixel (w5) are
available. If these operations take longer than the cycle
time, they too must be pipelined.

5.2. Floorplanning

The floorplanning [8] [9] phase is done using the Xilinx
Planahed tool. Here, the netlists of the filters developed are
added to the partitions defined as reconfigurable and then a
placement and routing of all the system logic is performed.
Finally, the partial and global bitstreams of the system are

generated.

6. Communication and Control Software

To allow the user to control the operations done on the
board, a remote graphical interface was developed. The
communication between the board and the interface is done
with the help of a TCP/IP-based protocol implemented on
both sides. The protocol implemented starts out with the
interface sending a configuration frame. This frame has all
the information about the selected filters, the image size,
the parameters for each filter and if it’s a hard or soft pro-
cessing request.

If the user chooses to run the process in hardware, the
processing is done by the Img process module. If the
user chooses the software version, the image processing is
done in the soft-core with the implemented software filters.
After user approval, the graphical interface sends the whole
image and then waits while the board is processing. When
the board finishes, the image is sent back to the graphical
interface and a new window pops out showing the outcome
image.

On the board side, the protocol was implemented us-
ing MicroBlaze soft-core and the lwiplibrary provided by
Xilinx. When the image is received, a state machine starts
sending and retrieving portions of the image to/from the
Img process module. In the case of software process-
ing, the soft-core itself begins processing the image using
filters implemented in the C language and compiled with
gcc (-O2 optimization level).

Using the graphical user interface it is possible for the
user to configure the connection settings, send an image to
process, choose the filters he wants to use and see the im-
age that results from the whole process. Besides the visual
result, the user is also able to see the measured time that
was needed to process the image. In this way, it is possible
to do comparisons between software and hardware runs.

The user is allowed to perform any number of execution
runs. Every time the user selects a different set of filters,
the filter slots that change are reconfigured with the bit-
stream corresponding to the user’s choice. Unused slots
are configured with a pass-through (“empty”) filter that the
user chooses in the graphical interface. Figure 6 shows the
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Figure 6. GUI with original and processed image.

Figure 7. Graphical user interface.

interface with one image and the resulting image after pro-
cessing, and Fig. 7 shows a snapshot of the interface devel-
oped;

7. Results

The soft-core (MicroBlaze) and the Img process
core are running at 125 MHz. To measure the performance
of the implemented system, some operations with different
image sizes were performed and the results were compared
to the same chain of processing in Matlab, running on a
Intel(R) Core(TM)2 Duo CPU E4500 at 2.2 GHz. Table 1
shows the processing time per pixel for different images.

There are two indicators for the hardware operation
(Img process”): total time and effective time. To-
tal time is time taken by the whole operation, including
the time that DMA spends transferring portions of the
image. Effective time accounts only for the time when
Img process is actually processing image data.

Table 1. Performance indicators.
Img process time Matlab

Image Size Total Effective Total Time

512 x 512 124.86 ns 8.13 ns 54.55 ns

875 x 700 127.80 ns 8.10 ns 102.69 ns

1024 x 1024 129.03 ns 8.06 ns 189.40 ns

Examining Tab. 1 it is possible to conclude that as the
image size grows, the processing time per pixel in Matlab
increases significantly, but stays approximately constant for
the hardware implementation. This can be explained by
the pipelined architecture, which processes the image with
the four filters working simultaneously. It is also possi-
ble to conclude that, as the image size grows, the effective
time tends to 8 ns, which is the period that corresponds to
the 125 MHz clock frequency. This is also a consequence
of the pipelined architecture, which introduces some initial
delays, but does not affect the overall frequency. So, as the
image gets bigger these delays become more insignificant.
The use of other type of filters only affects the initial delay
of the pipeline (depending on the hardware complexity of
the filter), but does not affect the performance of the whole
operation.

Knowing that the system was implemented in a Xilinx
XC5VLX50T FPGA device, the resources that were occu-
pied were: 33% of registers, 32% of LUTs, 63% of slices,
48% of IOBs and 66% of BlockRAMs. This means that
there is room for future developments and improvements.
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8. Conclusion

The implementation meets the initial objectives and is
completely functional. The user is capable of submitting
an image, choosing the filters and parameters he wants to
use, run the process and visualize the processed image and
performance indicators.

It is possible to enlarge the window for local image op-
eration. For that to be accomplished it is necessary to add
some more memory FIFOs before each filter. Given the
number of BRAM blocks available after implementation, it
would be feasible to use an 8×8 window for image process-
ing. Adding a new filter to the chain will not degrade the
overall performance of the system. However, FPGA rout-
ing will be more congested and could lead to a reduction in
operating frequency.

In order to enhance and improve the demonstration of
the FPGA dynamic reconfiguration capabilities, we aim
for future developments in the graphical interface, such as
adding animations which can provide a quick understand-
ing of what’s happening in the FPGA during the reconfigu-
ration process. Also, to simplify the development and addi-
tion of user-customized filters, a mechanism, provided by
the graphical interface as well, could be developed to au-
tomatically do the integration, in the design, of a Verilog
description filter done by the user; a filter would be then
immediately available for further usage. As a result, we
would have an automated process able to read a Verilog
module description of a filter, synthesize it, implement it in
the design’s floorplan and generate a partial bitstream of it.
In this way the user would have an easier understanding of
the reconfiguration and would be able to have available his
own filters to use in the implemented design just by writing
a Verilog description of it.
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Abstract—Software Defined Radio (SDR) is a large field of
research and its capabilities and applications are growing fast
due to the large growth of wireless systems and the flexibility
requirements of modern communication protocols. There are a
few affordable SDR platforms in the market for educational
purposes and research entry point. However, most of these
development kits are very limited in terms of computational
capacity, external interfaces, flexibility and/or observability of
the internal signals. The most well known SDR kit is the USRP
from Ettus Research LLC, that includes a motherboard with an
FPGA for IF signal processing and that can be connected to RF
frontends with different characteristics (frequency, bandwidth,
output power, etc). The digital processing performed in the USRP
FPGA is restricted to digital up/down frequency conversion
and filtering. USRP relies on a PC for baseband processing
using the GNURadio or Matlab/Simulink based packages leading
to performance bottlenecks. On the other hand, traditional
FPGA kits used for reconfigurable digital systems teaching and
research do not include the AD/DA converters with the required
performance for SDR systems. This paper introduces a modular
SDR platform, that consists in a designed AD/DA board that
interfaces directly with COTS FPGA kits and RF frontends,
allowing to build flexible and cost effective platforms for SDR
teaching, research and development. Different FPGA kits with the
required capacity and interfaces, as well as frontends for several
RF frequency bands can be used in a very flexible way, allowing
an easy customization or upgrade of the system accordingly to
the application requirements.

I. INTRODUCTION

A radio is any kind of device that is able to transmit or
receive wireless signals. Traditional radios were implemented
in hardware using analog design approaches. Such radios were
designed for a particular communication protocol and are very
inflexible since they can only be modified or upgraded through
physical intervention. With the emergence of new protocols,
those radios become obsolete because they can not be adapted
to new protocols, which leads to higher design, production and
maintenance costs [1]. As the design is dominated by hard-
ware, upgrading to a new protocol, usually means abandoning
the old design and start a new one [2].

The concept of Sofware Defined Radio (SDR) or Software
Radio was introduced by J. Mitola in 1992 [3][4]. The Wireless
Innovation Forum in collaboration with an IEEE group has
defined SDR as:

”A radio in which some or all of the physical layer
functions are software defined” [5]

A SDR has some kind of digital processor that is capable of
implementing some part of the signal processing traditionally

done in special-purpose hardware. Moreover, with SDR the
physical layer (or part of it) can be controlled by software,
thus the problems of the hardware radio are tackled. The
same piece of hardware can perform different actions such
as communicate using more than one protocol, turning this
radio into a multi-functional and reconfigurable one. If there
is the need to modify the radio behaviour to adapt to new
protocols, it is not necessary to change the hardware, but only
a piece of software or firmware.

The ideal SDR was defined by Mitola [3] (see figure 1) as
consisting of a Low Noise Amplifier (LNA) and an Analog to
Digital Converter (ADC) in the receiver chain, and a Digital
to Analog Converter (DAC) and a Power Amplifier (PA) in the
transmitter side. With this architecture all the signal processing
is done in the digital domain by a baseband programmable
processor.

Figure 1. Ideal SDR, idealized by Mitola [4]

The ideal SDR would cover most of the radio frequency
(RF) spectrum used. However, such high bandwidth exceeds
the limitations of the technology. The data converters would
need a very high sampling rate to support wide bandwidths. An
operating bandwidth of several GHz to support the conversion
over a high range of frequencies and other characteristics (such
as dynamic range) are not currently achievable.

Hence, a practical SDR needs some hardware to accom-
modate the signal feed to the DAC or received from the
ADC, and a baseband processor to implement the rest of
the signal processing in software as shown on figure 2. SDR
front ends are similar to those used in most transceivers, they
have mixers, filters, amplifiers, voltage-controlled oscillators
(VCO) and phase-locked loops (PLL). However, front end
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characteristics such as frequency of operation, bandwidth and
output power can be changed and controlled by software.

Figure 2. Practical SDR

Mitola also proposed in 1999 [6] an extension to SDR, the
Cognitive Radio (CR). CR is a radio that has artificial intelli-
gence and is able to sense its external environment and change
the internal state to adapt and improve its performance [5]. CR
is an environment aware radio that autonomously observes the
spectrum usage, identifies unused radio spectrum bands and
uses it in an intelligent way. It relies on the reconfigurability
of SDR to change its radio operational parameters and machine
learning algorithms to monitor its performance and adjust its
behaviour dynamically.

SDR architectures are dominated by software and therefore
the baseband processor plays a crucial role in the system.
There are three main categories of digital hardware that can
be used: Field Programmable Gate Arrays (FPGAs), Digital
Signal Processors (DSPs) and General Purpose Processors
(GPPs). It is also possible to use a hybrid solution with more
than one kind of processor.

Each digital hardware category has its advantages and
disadvantages. When choosing the digital hardware it should
be considered some criteria, such as:

• Flexibility: the ability to handle a variety of air-interfaces
and protocols;

• Level of integration: the ability to integrate several func-
tions into a single device;

• Development cycle: the time needed to develop, imple-
ment and test the design;

• Performance: the throughput or processing time to per-
form a set of actions;

• Power: the power needed to perform some action.
FPGAs are used for designing and prototyping most sys-

tems. They are more suitable than the other types of digital
processing platforms in the following situations [2]:

• Systems with high sampling rate;
• Systems involving variable word length: unlike DSP and

ASIC, on the FPGA the word length can be set to the
required length, improving their performance;

• Systems with high levels of parallelism, such as high
order FIR filters (in the FPGA the algorithm can be
implemented in parallel, decreasing the time required for
processing);

• Systems that require custom datapaths, memories and/or
functional units, such as fast correlators, FFTs and
(de)coders.

These caractheristics are very useful to implement a SDR,
therefore FPGAs are a commonly used digital processing
platform for such purposes.

II. COMMERCIAL PLATFORMS

There are many available SDR commercial platforms suit-
able for educational and research purposes, each one has
different characteristics as shown in table I. As we can see,
FPGA is the digital processor used in most platforms.

Figure 3. USRP architecture

The most well known platform is USRP. The USRP im-
plements the front end functionality and AD/DA conversion,
but assumes that the physical layer baseband processing is
performed on a general purpose computer. Its architecture is
illustrated in figure 3.

Platform Digital Processor Frequency Range ADC Rate DAC Rate Cost
USRP1 [7] FPGA Up to 4 Ghz 64 MHz 128 MHz $700

USRP N210 [7] FPGA Up to 4Ghz 100 MHz 400 MHz $1500
QS1R [8] FPGA 10 kHz - 62.5 MHz 130 MHz - $900

SDR-IP [9] FPGA 0.1 kHz - 34 MHz 80 MHz 200 MHz $2999
Perseus [10] FPGA 10 kHz 40 MHz 80 MHz - $1199

AR 2300 [11] FPGA 40 kHz 3.15 GHz 65 MHz - $3299
WinRaio WR-G31DCC [12] DSP 0.09 - 50 MHz 100 MHz - $950

Flex-3000 [13] DSP 10 kHz 65 MHz 96 kHz 96 kHz $1700
Matchstiq [14] DSP + GPP 300 MHz 3.8 GHz 40 MHz 40 MHz $4500

Table I
COMMERCIAL PLATFORMS

22 REC 2013 ISBN: 978-972-8822-27-9



USRP N210 consists in a motherboard with two 100 MHz
14 bit ADCs, two 400 MHz 16 bit DACs, an Altera FPGA that
provides two Digital Up Converters (DUC) and two Digital
Down Converters (DDC) (the rest of the signal processing
is by default done on a computer) and a connection to a RF
daugtherboard. There are various cost effective daugtherboards
provided by Ettus (table II), making USRP very flexible in
terms of frequency of operation.

Daughterboard Frequency Range Type (Rx/Tx)
BasicTX 1 - 250 MHz Transmitter
BasicRX 1 - 250 MHz Receiver
LFTX 0 - 30 MHz Transmitter
LFRX 0 - 30 MHz Receiver
TVRX2 50 - 860 MHz Receiver
DBSRX2 800 - 2300 MHz Receiver
WBX 50 - 2200 MHz Transceiver
SBX 400 - 4400 MHz Transceiver
XCVR2450 2.4 - 2.5 GHz, 4.9 - 5.9 GHz Transceiver
RFX900 750 - 1050 MHz Transceiver
RFX1800 1.5 - 2.1 GHz Transceiver
RFX2400 2.3 - 2.9 GHz Transceiver

Table II
RF FRONT ENDS AVAILABLE ON ETTUS RESEARCH, LLC

Almost all platforms require a computer to control its
operation and transfer the data for signal processing. There
are many software platforms available and generally, each
company that develops SDR platforms have its own. Some
examples are: GNU Radio [15], Winrad [16], PowerSDR
[17], SpectraVue [18] and Quisk [19]. GNU Radio is an
open source platform for SDR that has many implemented
blocks for signal processing such as equalizers, modulators,
demodulators, filters, scramblers, among others. It can be used
with the USRP hardware and, since it is open source, it allows
customizing the blocks or design new ones. The other software
platforms are not so flexible and customizable as they are
limited and do not allow an easy implementation of new
features.

III. MOTIVATION

As described before, most SDR systems need three basic
blocks: a RF front end, a baseband processor and an interface
to convert between the analog and the digital domains. In the
platforms available on the market these three blocks are often
physically integrated, making it impossible to change or up-
grade the block individually. On the other hand, modular SDR
platforms are very expensive and include high end FPGAs,
DSPs or both, as well as high speed AD/DA components.
To the best of our knowledge Ettus Research LLC, is the
only company that develops affordable platforms that are
independent from the front end and thus, it is possible to
operate in different frequency ranges changing only the front
end board. However, the FPGA used in the Ettus USRP kit
has very limited capacity and it is relatively difficult to change
its functionality.

On the other hand, universities and research institutes with
FPGA-based design courses and projects already have Com-

mercial Off-The-Shelf (COTS) FPGA kits with a rich set of
interfaces that can be used in a very flexible way for baseband
processing in SDR systems if adequate AD/DA and front end
modules are provided. However, in the market place there is no
affordable RF + AD/DA platform that is independent from the
digital processor making them more expensive and inflexible
to accommodate developments of the digital technology.

The motivations for developing the modular architecture
presented in this paper are the following:

• to foster the research of SDR and its enabling technolo-
gies with a modular platform where every block is inde-
pendent from each other, enabling an easy modification
of each one (the FPGA module, the AD/DA stage and
the RF front end are completely independent with a well
defined interface among them);

• to reuse a large set of affordable FPGA kits normally
used in reconfigurable digital system classes and research
projects;

• to reuse a large set of RF front ends available for the
USRP that cover a vast frequency range of the radio
spectrum.

Since this work is based on COTS FPGA and front end kits,
the main contribution is on the AD/DA module and supporting
IP core components that would allow using the entire set in the
design of SDR systems for educational and research purposes.

IV. PROPOSED PLATFORM

The proposed platform is composed by three boards (figure
6), each SDR basic block corresponds to a different board.

Figure 6. Conceptual kit architecture.

The baseband processor can be any COTS FPGA kit that
includes a VHDC connector to transmit or receive a signal. To
work as a transceiver (Rx/Tx) it is needed a FPGA kit with two
VHDC connectors or two kits each one with one connector.
The FPGA used to implement this platform is the Genesys
Virtex-5 from Digilent [20], but the cheaper Nexys 3 or Atlys
kits can also be used. Such kits are the most used platforms
for teaching reconfigurable digital systems. The Genesys kit
has two VHDC connectors, gigabit ethernet and has a clock
generator up to 400 MHz, among a large set of peripherals
and add-on modules.
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Figure 4. Overall structure of the developed setup with different combinations of FPGA and RF modules

The RF front end has to accommodate the signal to a
suitable range to be converted by the DAC or the ADC. In
the transmitter path the front end has to shift the signal from
an intermediate frequency (IF) to RF. In the receiver path it
has to shift the signal from RF to IF or baseband. The AD/DA
converter board was designed to support any front end from
Ettus Research (table II), but this platform can also be used
to test an experimental front end. The architecture of the front
ends from Ettus is similar to the architecture shown in figure
2 with amplifiers, mixers, filters, VCOs and PLLs. The VCO
can be externally controlled to change the carrier frequency.

An overview of some of the components that can be used
are show in figure 4.

The AD/DA converter is responsible for the interface be-
tween the front end and the FPGA kit. It is constituted by two
boards, one for transmission and one for reception. The layout
of these boards are depicted in figure 7 and 8 respectively.

The transmitter board includes two 105 MHz DAC with 16
bits a clock manager that receives the clock from the FPGA

Figure 7. Transmitter board layout

and accomodate it to the DAC and to the front end. It has an
auxiliary ADC and an auxiliary DAC to do analog control in
the front end and a CPLD. It also has its own power supply
and provides necessary power to the front end.

The receptor board is similar to the transmitter board. It

24 REC 2013 ISBN: 978-972-8822-27-9



Figure 8. Receiver board layout

has the same components, but instead of a DAC, it has an 400
MHz ADC with 14 bits.

The VHDC connection has 20 differential pairs (40 bits),
however the AD/DA board needs many more signals to work
correctly. In the case of the trasmitter board, it needs 32 bits
to feed the signal to the DAC, 2 bits for the clock, 15 bits to
implement the Serial Peripheral Interface (SPI) protocol to the
various components, and 20 bits to control and configuration
of the front end. The trasnsmitter board would need a 69
bits connection with the FPGA, thus to be able to connect
with only one VHDC connection a CPLD was included in the
design of the board. The roles of CPLD are:

• comunicate with the FPGA kit;
• implement a SPI Master to control all components on the

board by SPI protocol;
• provide the front end 20 input/output bits.
With the CPLD in the board, the transmitter only needs a

39 bits connection with the FPGA being possible to use the
VHDC connection.

The purpose of the auxiliary ADC/DAC is to be able to do
some analog control in the front end. Using the WBX front end
from Ettus Research, they are used to control the quadrature
modulator.

The clock manager is used to convert and accomodate the
clock to the ADC/DAC and front end. The input is a differ-
ential clock and the output to the front end is CMOS/LVDS,
to the ADC CMOS and to the DAC LVPECL.

The components used in the board are specified in table III
.

Component Reference
DAC AD9777 [21]
ADC LTC2284 [22]
CPLD XC2C128 [23]
Clock Manager AD9512 [24]
Auxiliary ADC AD7922 [25]
Auxiliary DAC AD5623 [26]

Table III
COMPONENTS USED

These boards have characteristics similar to the commercial
available platforms, with an ADC capable of operate at a rate
of 100 MHz and a DAC operating at 400 MHz. Using Ettus
front ends, these platform have a frequency range of operation
up to 4 GHz.

The platform will provide all the front end and AD/DA
board functionality with open source intellectual property
(IP) cores. This way, the software will be reusable and the
implemented hardware will be independent from the FPGA
used.

V. SOFTWARE TOOLS

The platform needs two types of software, the processing
chain to be implemented in the FPGA and the digital signal

Figure 5. Programming Flow
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processing to be implemented in the host PC.
Software for the FPGA kit can be developed using tradi-

tional FPGA tools, such as the Xilinx ISE [27] (a package
that contains all the programs needed for the entire FPGA
development flow, it enables device programming, design en-
try, synthesis, place & route and simulation), the Xilinx EDK
[28] (a package that includes tools for designing embedded
processing systems supported by Xilinx) and the System
Generator [29] (a interconnection with Matlab/Simulink that
allows the implementation and debugging of digital system for
the FPGA in Matlab).

With the generated programming bitstream, vendor specific
tools (e.g. Digilend Adept, Xilinx Impact, etc.) can be used to
download the bitstream to the FPGA.

The FPGA kit interfaces with a host PC via USB or ethernet.
The host PC can process the data with software applications
developed in GNU Radio or Matlab.

An overview of the programming flow is depicted in figure
5.

VI. APPLICATION EXAMPLE

An SDR can work as a remote radio or a Web SDR,
converting part of the radio spectrum in a remote location and
transmitting it to the Web or fetching data from the Web and
converting it to RF. This would enable to configure and control
the SDR remotely and every kind of device with internet
connection could access the data being received by the SDR
or send data to be processed and transmitted. The conceptual
idea is shown in figure 9.

To achieve this the SDR must have an ethernet connection.
The vast majority of the COTS FPGA kits has an on-board
ethernet connection and they can connect to the Internet and
act as a stand alone web server and therefore this application
is costless and useful.

Figure 9. SDR Web

This application can be very helpful to implement and test
new algorithms for CR as we can connect various SDR to an
host that coordinates their mode of operation to use the radio
spectrum inteligently.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented an overview of SDR and its
enabling technologies and some commercial available plat-

forms. We also presented a new modular architecture for SDR
platforms to offer more flexibility to accomodate new devel-
opments in the technology associated. A prototype platform
using this architecture is in production and we hope that it
can be used by universities or research centers to develop a
broader community of users and share new applications.

This platform could benefit from further developments, such
as:

• IP cores to support the implemented hardware;
• signal processing blocks for the FPGA, such as modula-

tor, demodulators, etc;
• portability to the computer, to be able to test new

radio designs in programs such as GNU Radio, before
implementing in the FPGA.
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Abstract

This paper describes the process of implementing a cus-
tom accelerator in a reconfigurable device with the PCI
Express interface, and exposing its functions to user space
applications. The process includes attaching the comput-
ing unit(s) to the DMA controller and the PCIe interface
IPs, followed by writing appropriate kernel driver and a
user space library. A case study is presented, in which an
AES encryption IP core is used to accelerate the EncFS en-
crypted file system on Linux on a hardware platform con-
sisting of an Intel Atom CPU and an Altera Arria II FPGA,
connected with 1-lane PCIe interface. The implementation
of the interface between the accelerator and software ap-
plications is capable of data transfers of over 190 MB/s,
and the overall speedup of the encryption procedure com-
pared to an equivalent software implementation from the
OpenSSL library is 3. Further optimizations are possible
and are also discussed in the paper.

1. Introduction

Custom accelerators implemented in reconfigurable de-
vices are often developed for embedded systems, which are
dedicated to small numbers of fixed tasks, and therefore use
only minimal Real-Time kernels or no operating systems at
all. In such systems, engineers usually have the freedom to
design the interface between hardware and software, and
the software usually has direct access to the device regis-
ters.

More complex systems usually connect multiple devices
through one or more industry standard interfaces eventually
providing virtual memory to isolate multiple processes run-
ning on them. Taking advantage of these features requires
more effort, as the protocol specifications and the program-
ming interface defined by the operating system must be
strictly followed. Such systems have already been very
common for many years, and the protocols are becom-
ing increasingly complex with their subsequent revisions.
Therefore the task of implementing and integrating a cus-
tom accelerator may be challenging for a researcher who
has little experience with this particular set of technology
and just wants to get the things done.

In this paper, a complete implementation of a PCI
Express-based accelerator for the Advanced Encryption
Standard (AES) is described, including the evaluation of

its performance and discussion of the results. Although the
PCIe interface has been an industry standard for about 9
years, it still seems to have found relatively little interest
in the scientific community of the embedded systems area.
Initially, it might be caused by the complexity of the spec-
ification, making the development of the PCIe-enabled de-
vices from scratch difficult and costly. However, the situa-
tion has changed. Nowadays, top FPGA vendors have mul-
tiple devices available in their portfolio that provide easily
configurable standard components implementing the PCIe
standard (see for example [1] and [2]). Furthermore, al-
though the architecture of the bus is fundamentally differ-
ent than the older parallel PCI standard, the software pro-
tocol remains compatible with other PCI variants, which
greatly facilitates the development of software, especially
device drivers, for PCIe devices.

With this observation in mind, a large part of the paper
focuses on the discussion of the issues related to the devel-
opment of the Linux device driver and with its integration
with the accelerating core. Instead of crafting a specialized
driver, a generic PCI driver was used, which made it pos-
sible to develop the custom drivers in the user space with
significantly less effort. It is also worth mentioning that
although the Altera components and tools are referred to
throughout the paper, equivalent components and tools can
be also found for Xilinx devices.

The remaining part of this paper is organized as follows.
The next section gives an overview of the considered case
study by briefly introducing the software application that
was accelerated and by characterizing the IP core imple-
menting the equivalent algorithm. Section 3 discusses the
architecture of the entire hardware design, i.e. the config-
uration of all the components that turns the IP core into a
useful accelerator. Section 4 focuses on the layered im-
plementation of the device driver, which makes the accel-
erator functions available to user applications. Section 5
shows the results of the performance evaluation of the en-
tire system. Section 6 briefly discusses alternative design
options and their preliminary evaluation. Finally, Section 7
concludes and gives directions for the future work.

2. Case study: EncFS

2.1. Software application

The accelerated application is EncFS (Encrypted
Filesystem) [3]. It is based on FUSE (Filesystem in

ISBN: 978-972-8822-27-9 REC 2013 33



STUVWXYZ[\V]ZXV^_`ab_c

wxyz{|}~ ����x{|}~
��������{�w�dWe_Vfg[^Ved

��w�
�����xy�{�x��x���

���x{x�z�����

STUVWXYZ[\V]h[XiV^_`ab_c

wxyz{|}~����x{|}~
��������{�w�

Wdj ���x{�! kYlbmanVi_iX[o
]SpgqlnX[ZV!UTc

wxyz�����x{|"~ wxyz�����x{|"~

Ur"VWXn[Xb_##X[

}x���#{wxyz�����x{|}~
��������{�w�

Ad$U

Figure 1. Architecture of the memory-based accelerator. M represents an Avalon MM Master port (one that
initiates transactions), whereas S represents a Slave port (one that responds to Master’s requests).

USErspace) and works by providing an unencrypted view
of each encrypted file from its underlying storage direc-
tory under the mount point. EncFS is written in C++ and
its architecture permits adding ciphers, by implementing
the necessary methods for key setup and data encoding and
decoding. It originally uses the OpenSSL library to pro-
vide encryption using the AES cipher in the Cipher-Block
Chaining (CBC) mode of operation with a 128-, 192- or
256 bit key.

2.2. The AES IP core

The cryptographic core used in this work is the AES
coprocessor proposed in [4], which implements the AES
cipher, first proposed in [5]. Encryption and decryption
with 128-, 192- and 256-bit keys, as well as the Electronic
Codebook (ECB) and CBC cipher modes of operation are
implemented. The core is able to execute one round of the
AES algorithm per clock cycle, thus requiring 10, 12 or
14 cycles per 16-byte block, depending on the key length.
With the operating frequency of 125 MHz, it provides a
throughput of 190 MB/s, 159 MB/s and 136 MB/s for key
lengths of 128, 192 and 256 bits, respectively.

3. Hardware architecture

The architecture of the developed accelerator is pre-
sented in Figure 1. It was designed using the Altera Qsys
system design tool and uses the Avalon Memory Mapped
(Avalon MM) interface [6] to interconnect the several com-
ponents in the FPGA.

The AES core was equipped with the appropriate logic
to read the keys and the input data from the on-chip mem-
ory and store the results therein. Likewise, a set of control
registers for the configuration of the buffer addresses and
the operation mode, as well as an interrupt signal source
to inform the CPU when the encryption is done were pro-
vided.

The use of a dual port on-chip RAM simplified the in-
terface between the AES core and the memory, for it was
not necessary to implement any control logic to negotiate
the access of multiple masters to the memory.

Since the transfers of large amounts of data are done
more efficiently with the Direct Memory Access mecha-
nism, the design includes two Scatter/Gather DMA con-
troller cores, one per each direction. The Scatter/Gather
capability is needed to compensate for the non-contiguous

mapping of the virtual memory pages in the physical mem-
ory. Since the DMA cores available in the Qsys compo-
nent library have the bus management logic already im-
plemented, they can share the second port of the on-chip
memory. The system also includes two additional instances
of on-chip RAM (one per DMA controller), used to store
the descriptor lists. For clarity purposes, they are omitted
from the figure, as logically they belong to the relevant con-
trollers.

The configuration of the PCI Express Hard IP core [1],
serving as the bridge between the PCIe interface and the
Avalon MM interface, needs slightly more attention. Its
functions include: a) the PCI configuration space, con-
taining the information required by the operating system
to identify the device and map its I/O ports and/or mem-
ory into the CPU physical address space; b) a simple inter-
rupt controller, allowing multiple Avalon interrupt sources
to share a single PCIe interrupt request signal; c) a con-
figurable address translation table, allowing the whole 32-
or 64-bit PCIe bus address space to be addressed using the
much narrower address space of the Avalon MM slave port.
Further discussion of the mapping between the different ad-
dress spaces is given in Section 4.1.

The design built in Qsys requires some additional sup-
port in the top-level module, whose details are covered
in [1].

4. Software

4.1. DMA and address translation

The major difficulty when implementing an efficient
PCI device driver is not related to the bus protocol itself,
for which the Linux kernel offers a relatively simple API
(Application Programming Interface), described in detail
in [7]. What increases the conceptual complexity (and
sometimes also causes performance loss), is the existence
of multiple different address spaces in the system. Dif-
ferent APIs are used to access the memory and registers
located in different address domains. Mapping ranges of
addresses between different domains sometimes requires
building complex data structures. If the mapping cannot
be done by hardware, data must be copied. This section
briefly discusses the most important issues related to ad-
dress translation and the solution commonly implemented
in order to efficiently exchange the data between the user
process and the hardware.
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Figure 2. Address domains and translations between
them.

The exact structure of the relations between these ad-
dress domains depends on the system architecture. Fig-
ure 2 illustrates the set of the address domains in the sys-
tem where the accelerator was evaluated. This structure
would be even more complex on an architecture with an
IOMMU (Input/Output Memory Management Unit), trans-
lating the addresses between the physical address space and
the bus address space (here, they are the same addresses),
or if the I/O memory could not be mapped into virtual ad-
dress space. A portable driver should be aware of these
issues and use the proper API for every type of address [7].

The kernel logical addresses (see Figure 2) are a part
of the kernel virtual memory, where the physical memory
(or a part of it) is linearly mapped, possibly with some off-
set. This region of memory is used whenever a contiguous
buffer needs to be allocated. Such buffers generally make
a DMA transaction easier to configure (with the simplest
DMA controllers they are the only possible option), but re-
quire either a modification of the application, so that it re-
quests the allocation of a buffer within the kernel space and
mmaps it to the process space, or a copy of the data to be
made between the user memory and the kernel buffer.

In many cases, however, the programmer does not have
the opportunity to change the way the buffer is allocated,
because the memory may be allocated by a different soft-
ware module. This is the case in the EncFS, where the en-
cryption function only receives the pointer to the buffer and
the data length. Making the cipher implementation able to
preallocate the buffer would require major changes in the
design of the whole application. The solution here is to map
the user memory buffer into the bus address space. How-
ever, the virtual memory pages are almost certainly scat-
tered all over the physical memory, and are usually small
(4 KB in x86-based systems). To avoid the need to transfer
each page separately, a Scatter/Gather DMA controller may
be used. The SG-DMA controller reads a singly linked list
of descriptors, containing the addresses and sizes of subse-
quent blocks, and transfers the data from or to all of them
in a single transaction, without further CPU intervention.

4.2. Linux device driver

Device drivers are usually written with some specific,
fixed hardware in mind, and therefore their interface offers
a well-defined and closed set of functions. However, im-
plementation devices based on FPGAs offer a high level of
customizability, and so it is desirable for the driver to be
more flexible.

The “flexibility” here means the possibility to adjust the
functions of the driver to the modified device configuration,
without replacing the driver module in the kernel. It also
means that the driver interface should not be obscured due
to the limitations of standard device driver interfaces of the
operating system, such as the need to use the ioctl()
calls to implement arbitrary operations outside the usual
semantics of read() and write().

In a monolithic kernel, such as Linux, such flexibil-
ity can be achieved by implementing a generic PCI de-
vice driver, which does not focus on any particular func-
tion of the device, but makes the device registers available
to user space processes, so that they can program them di-
rectly. A very well-known example of such universal driver
is the commercial Jungo WinDriver [8]. Simpler and open-
source drivers can also be found, such as the generic PCI
driver from the MPRACE framework [9], which was cho-
sen as the basis for the user-space drivers described in the
next section.

The driver is composed of two parts: the actual kernel
driver, exposing its functions through a character device of-
fering a number of ioctls to control the driver, and a C++
library, providing a convenient programming interface for
the user applications. The main functions of the driver in-
clude: a) device detection and initialization; b) creation of
the device nodes (/dev/fpgan); c) mapping the memory re-
gions defined by the Base Address Registers (BARs) into
user process address space; d) allocating contiguous buffers
in the kernel memory and mapping them as DMA buffers
available to the device and to the user process; and e) pin-
ning user-allocated virtual memory buffers in the physi-
cal memory and mapping them to the PCIe bus addressing
space.

Although the first prototype of the AES accelerator was
evaluated with a “traditional” kernel-mode driver, the mi-
gration to the generic driver architecture made it possible
to try out more different configurations in a shorter time.
Most likely, it was because the memory mapping intrica-
cies were hidden behind the simple C++ interface, which
had already been tested and debugged.

The original driver required a slight change to make it
recognize the Altera PCIe devices and a more significant
modification of the interrupt handling subsystem. This lat-
ter part is difficult to be implemented generically in the
user space, because interrupt acknowledgment must be per-
formed from within the interrupt service routine, which
cannot execute outside of the kernel space.

The Altera PCIe Hard IP supports up to 16 distinct
Avalon MM interrupt sources. They can be enabled sepa-
rately, even from the user space, by setting the relevant bits
of the interrupt control register. After the specific interrupt
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is enabled in the PCIe-to-Avalon MM bridge and the ap-
propriate core is configured to generate interrupts, the ap-
plication should request the driver to wait for an interrupt.
The approach that was implemented in the original driver
for some boards was to expect the application to specify the
interrupt source to wait for. In the Altera variant, however,
the driver catches any interrupt that arrives first, disables all
interrupts on the PCIe bridge, and returns the mask of all
interrupt signals that were asserted when the interrupt ser-
vice routine started. It is then up to the user space program
to properly handle them, end re-enable them on the bridge
if necessary.

Although this semantic difference may seem confusing,
it is not against the original authors’ assumption, which
states that the interrupt handling code would be specific
to particular devices. It also makes the kernel part of the
driver shorter and usable for virtually all devices using the
standard library component for the PCIe bridge.

It is worth to remind that with great power comes great
responsibility, and providing the access to device registers
to the user-space application makes it able to set up, for
example, a DMA transaction that will overwrite the kernel
memory with arbitrary data. This may result in all kinds
of unwanted effects, from system instability to data loss to
major security compromises. Therefore, care must be taken
to properly test and secure the application using such driver
before giving it to the end user. The user-space drivers de-
scribed in the next section help to address this issue by en-
suring that all buffer mappings are valid for the entire time
of the DMA transaction.

Another important note is that the operation of the
generic driver relies on the assumption that the PCI I/O
regions can be mapped into the CPU memory addressing
space. Although this is true for the x86 platform, it is not
fully portable, and the access to the device registers in fu-
ture versions of the driver should instead be provided by
wrapping the appropriate kernel API.

4.3. User space drivers

A set of classes was specifically developed to support
the Altera components (the PCIe-to-Avalon MM bridge
and the SG-DMA controller) and the cryptographic core.
They use the C++ API of the generic PCI driver to access
the registers of all cores in the FPGA, request the mem-
ory mappings and configure and handle the interrupts. The
RAII (Resource Acquisition Is Initialization) idiom and
smart pointers are used throughout the code, in order to
minimize the likelihood of resource leakages and memory
corruption errors.

4.3.1. PCIe-to-Avalon MM bridge

The programming interface of the device drivers for the
Altera IP cores is summarized in Figure 3. The AltPCIe
class encapsulates the access to the PCIe-to-Avalon MM
bridge. The constructor accepts three parameters: the mi-
nor number of the char device node, the BAR where the
control registers of the bridge are located, and the base ad-

class AltPCIe {
AltPCIe(unsigned dev, unsigned bar,

unsigned long offset);
void* getMappedBar(unsigned bar);
UserMemPtr mapUserMemory(void* buf,

unsigned size, dma_direction_t dir);
AddrTable& getAddrTable();
IrqPtr requestIrq(unsigned irq);

};
class AddrTable {

PageMapPtr createPageMap();
};
class PageMap {

unsigned map(unsigned addr,
unsigned size, unsigned* mapped);

};
class Irq {

void enable();
void disable();
void wait();

};

Figure 3. Public API of the user space driver for the
Altera PCIe-to-Avalon MM bridge.

dress of the control register block within that BAR. This
way, the location where the software expects the registers
can be easily adjusted to the actual configuration of the
system implemented in the FPGA. The AltPCIe class
provides wrappers for the memory mapping calls of the
PciDevice class of the generic driver, which keep track
of all allocated resources. It also gives the access to the
Avalon MM to PCIe address translation table and the inter-
rupt controller.

The address translation table is managed by the
AddrTable object, to which a reference can be obtained
using the getAddrTable() method of the AltPCIe
object. Entries serving a common purpose (such as map-
ping a pinned user-space DMA buffer) are managed by
a single PageMap object, which can be obtained from
the AddrTable::createPageMap() function. Sub-
sequent portions of the buffer are then mapped by sim-
ply calling PageMap::map(), providing the PCIe bus
address of the buffer and its size. The returned value is
the equivalent address on the Avalon MM slave interface,
which can be used to set the address for a DMA controller.
Entries in the global table are reused if more than one buffer
slice falls within the same Avalon MM page, even if they
belong to different PageMap objects. Each entry has a
reference count associated with it, so that it is moved to the
free list when the last PageMap object using it is deleted.

An interrupt line can be allocated using the
AltPCIe::requestIrq() function, which re-
turns a reference-counted pointer to an Irq object,
encapsulating all necessary operations, which include
enabling or disabling the interrupt line and waiting until an
interrupt occurs on that line.
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class AltSGDMA {
AltSGDMA(AltPCIe& altpcie, ...);
void copyToDevice(const void *srcBuf,

unsigned destAddr, unsigned size);
void copyFromDevice(void *destBuf,

unsigned srcAddr, unsigned size);
void waitForCompletion();

};
class AltSGDMAPair {

AltSGDMAPair(AltSGDMA& todev,
AltSGDMA& fromdev);

void stream(void *src, void *dest,
unsigned len);

void waitForCompletion();
};

Figure 4. Public API of the user space driver for the
Altera Scatter/Gather DMA controller core.

4.3.2. SG-DMA controller

The API used to control the Altera SG-DMA con-
troller core is presented in Figure 4. The AltSGDMA
class encapsulates the functionality of the Altera Scat-
ter/Gather DMA controller core. It is configured by spec-
ifying the AltPCIe object associated with the device,
the location (BAR and offset) of the DMA core regis-
ters and the descriptor memory, interrupt line and the pol-
icy for the waitForCompletion() method (polling
the device registers in a loop or putting the process to
sleep and waiting for an interrupt). The sibling functions
copyToDevice() and copyFromDevice() pin the
pages of the virtual memory where the local buffer is al-
located to the physical address space, map them into the
Avalon MM address space, build the list of descriptors and
set the controller registers to start transferring data. Since
configuring the above data structures is quite costly, they
are kept configured and reused in subsequent calls, pro-
vided that the specified buffer lies within the previously
mapped area.

The AltSGDMAPair class is a convenience wrapper
which joins two controllers in a pair that effectively handles
the processing in a stream-based architecture. This topic is
further covered in Section 6.

Figure 5 demonstrates the use of the just described API,
showing that copying data between a user-process memory
buffer and the accelerator memory is only a matter of creat-
ing an AltSGDMA object, configured according to its con-
figuration in the FPGA design, and invoking the functions
to start the transfer and wait until it is finished.

The communication diagram in Figure 6 presents the
detailed control flow of the implementation of these func-
tions, showing how the SG-DMA driver uses the AltPCIe
API to map the memory, build the descriptor list and make
the controller perform the actual transfer.

4.3.3. The cryptographic IP core

The API of the cryptographic core driver is pre-
sented in Figure 7. The setKey() function per-

AltPCIe altpcie(DEV, BAR, CRA_BASE);
AltSGDMA dmaToDev(altpcie, ...

/* configuration of the SG-DMA core:
address of the core and descriptor
memory, Avalon IRQ # */)

void *buf = malloc(BUF_SIZE);
... fill buf ...

dmaToDev.copyToDevice(buf, DEV_BUF_ADDR,
BUF_SIZE);

dmaToDev.waitForCompletion();

Figure 5. Example usage of the SG-DMA user-space
driver.

forms the key expansion (in software) and writes the
expanded keys into the device memory at a specified
address. The processData() function initiates the
encryption according to the specified parameters. The
waitForCompletion() function puts the process to
sleep until the encryption is complete, which is signaled
to the CPU by an interrupt.

As all components have their interfaces split into the
“initiation” and “completion” steps, it is easy to implement
a pipeline, where at each time instant one portion of data
is transferred to the device, another one is encrypted, and
yet another one is received from the device. However, such
method is only practicable if the application is aware of
that possibility. Many applications request the processing
of the data in a synchronous manner, which would require
dividing the buffer in smaller chunks to take the advantage
of pipeline processing.

5. Evaluation

5.1. Evaluation platform

The conceived accelerator was implemented on a Kon-
tron MSMST board incorporating an Intel Stellarton pro-
cessor, which includes an Intel Atom CPU at 1.3 GHz and
an Altera Arria II GX FPGA, connected with two PCIe v1.1
1× links [10]. In the prototype developed in this work, only
one bidirectional PCIe link is used, which implies the max-
imum raw throughput of 250 MB/s (500 MB/s in duplex
mode). All cores implemented in the FPGA are driven by
the 125 MHz application clock from the PCIe Hard IP core.

5.2. SG-DMA controller performance

To estimate the data transfer throughput limitations of
the accelerator, the performance of the SG-DMA con-
trollers was evaluated first. The results are shown in Fig-
ure 8. The dashed lines show the throughput with the mem-
ory mapping and descriptor list configured before each
DMA transaction. The solid lines show the throughput
with these steps omitted, as when the buffer is allocated and
mapped once and then reused for subsequent data transfers.

The overhead of mapping the memory and creating the
descriptor list can be as high as hundreds of microseconds.
It is mostly caused by copying the list of page addresses
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Figure 6. A communication diagram presenting the interaction between the SG-DMA controller driver and the
objects of the PCIe-to-Avalon MM bridge driver during a single DMA transfer from the primary memory to the
accelerator memory.

class AESCore {
AESCore(AltPCIe& pcie, unsigned bar,

unsigned long offset);
enum Mode { MODE_ECB, MODE_CBC };
void setKey(const void* key,

unsigned keyAddr, unsigned rounds);
void processData(unsigned srcAddr,

unsigned destAddr, unsigned nbytes,
unsigned keyAddr, unsigned rounds,
Mode mode, bool decrypt);

void waitForCompletion();
};

Figure 7. Summary of the public API of the AES en-
cryption core user-space driver.

and sizes from kernel to user space, and writing consider-
able amount of data to device registers and memory using
programmed I/O (i.e. separate transaction for each word
of data). Since heap memory allocation and deallocation
is also considered a costly operation in purely software ap-
plications, it is generally avoided, which makes the need
for creating a new mapping rare. Therefore only the case
where the buffer mapping is reused will be considered.

As it can be seen, the overhead of the transaction ini-
tialization and completion, amounting to about 20 µs per
transaction, seriously harms the performance for transfers
of up to tens of kilobytes. This suggests that, whenever pos-
sible, multiple requests to process small amounts of data
should be merged into a single, bigger transaction. Other-
wise, the additional cost of transferring the data may out-
weigh the benefit of using the accelerated implementation.
As a consequence, it may be better to still use its software
equivalent for smaller chunks.

While the data rate of the transfers from the device
(reaching 191 MB/s), seems to be mainly limited by the
maximum raw throughput of the PCIe bus, the transfers
in the opposite direction are significantly slower, with a
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Figure 8. Throughput of the SG-DMA controllers in
memory-to-memory transfer mode.

maximum of about 147 MB/s. This difference may result
from the fact that a transfer to the device is conducted as a
series of read transactions initiated by the PCIe endpoint,
and each of them is composed of a request and a response.
The round-trip time of such transaction is naturally higher
than the time of a purely unidirectional write transaction.
Likewise, the attempt to simultaneously transfer the data in
both directions results in a total throughput which is only
slightly larger than the transfer in only one direction. The
read requests not only have their own latency, but they also
“steal” some bandwidth from the reverse link.

5.3. Comparison with OpenSSL

The overall performance of the accelerator was evalu-
ated by measuring the total time required to transfer the
data to the accelerator memory, process them, and then re-
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Figure 9. Throughput comparison between the cryptographic core (HW) and software AES implementation from
OpenSSL (SW) for different key lengths.
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Figure 10. Architecture of a stream-based accelerator.

ceive the encrypted data. The keys were assumed to have
been set previously. The throughput measured this way
was compared with the overall throughput of the equiv-
alent software implementation from the OpenSSL library
(version 1.0.0e), and the results are shown in Figure 9(a).
Both implementations run in the CBC mode. The smallest
chunk size is 16 bytes, which is the size of the block en-
crypted at once by the AES algorithm. The largest chunk
size is 256 KB, which is the limit imposed by the size of
the on-chip RAM.

As it can be seen from the graph, the throughput of
the software implementation is almost constant for chunks
larger than 64 bytes, reaching about 11, 9.2 and 7.8 MB/s
for 128-, 192- and 256-bit key, respectively.

Since the DMA transfers take a major part of the total
time, the throughput difference of the AES core in what
concerns the key length becomes insignificant. The over-
all throughput in the useful region, where the accelerator is
faster that the software implementation, is from 14 MB/s
for 2-KB chunks to 28 MB/s for 256-KB chunks, thus giv-
ing a speedup of about 3 over the software implementation
(see Figure 9(b)).

To evaluate the actual speedup that a real application
would get from such accelerator, an EncFS file system
was mounted using the software AES implementation with
4096-byte blocks and a 256-bit encryption key. The Linux
2.6.35 source code (34 MB of data, distributed among sev-
eral files and directories of different sizes) was used for
benchmarking. The files were copied into the file system
and the time spent in the encryption was measured. The
whole operation took 22 seconds, out of which the encryp-
tion only took 6.8 s. The encryption of chunks of 2 KB and
larger (i.e. those, for which the use of the accelerator makes

sense) took 3.43 s (15.6% of the total time). Assuming the
2× speedup for such chunks, the overall speedup is about
1.08.

6. Stream-based accelerator

Greater performance increases may still be obtained by
replacing the memory-based architecture with a stream-
based one, as shown in Figure 10. The key difference is that
the DMA controllers do not copy the data from one mem-
ory to another, but convert the sequence of words read from
memory into a stream and vice versa. The main advantages
of such approach are that it does not require any additional
memory blocks in the FPGA (except for relatively small
FIFOs), and the latency is much shorter, because the data
no longer needs to be copied.

The AES core has a few important features that make
such an architecture the right choice for it. First and fore-
most, the nature of the algorithm, transforming an arbitrar-
ily long stream of plain-text data into an encrypted stream
of the same length (or vice versa) just fits naturally into
such architecture. Second, the latency of 10 to 14 cycles
between the output and the input is very low, when com-
pared with the other sources of overhead in the system.

Figure 11 predicts the upper performance limit of a
stream-based accelerator implemented on the evaluation
platform. It was obtained by measuring the buffer-to-buffer
throughput with the Source port of the “to device” DMA
controller connected directly to the Sink port of the “from
device” DMA controller. Since the AES core is still signif-
icantly faster than those controllers, the graph shows a real-
istic estimate of the hypothetical performance of a stream-
based AES accelerator. This not only further multiplies the
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Figure 11. Maximum achievable buffer-to-buffer
throughput of a stream-based accelerator, com-
pared to the software implementation of AES from
OpenSSL.

maximum throughput by a factor of 4, but it also makes
the accelerator useful for almost every size of data. In the
benchmark from the previous section, encryption of 16-
byte chunks corresponded to about 3.1 seconds, i.e. another
14% of the total time. Thus, the overall speedup obtained
from the use the stream-based accelerator in that bench-
mark is estimated to be over 1.25.

7. Conclusions and future work

The design, implementation and evaluation of an FPGA-
based accelerator with the PCIe interface have been de-
scribed in this paper. It has been shown that standard li-
brary IP cores can be used to implement an efficient in-
terface for a custom accelerator core. A generic PCI de-
vice driver has been used to make the accelerator functions
available for software, and the user-space driver approach
has proven to be a useful method of device driver devel-
opment. The developed drivers have a clean and compact
programming interface.

The evaluation of the provided performance of the con-
ceived accelerator has shown that the overhead associated
with initiating and completing the execution of the ac-
celerator functions has significant impact on the effective
throughput for small data sizes (up to tens of kilobytes).
Although the implemented AES accelerator achieved the
speedup of up to 3 over the software implementation from
OpenSSL, it performed worse than OpenSSL when the
considered file system requested the encryption of small
chunks.

A preliminary evaluation of a stream-based accelera-
tor architecture has indicated that using such an archi-
tecture potentially results in significantly higher perfor-

mance, because of the reduction of the latency and the
setup/completion overhead. Thus, future work will include
further studies involving stream-based accelerators, includ-
ing their chaining and multiplexing.

In order to conform to the terms of the GNU Gen-
eral Public License, as well as to promote the continu-
ation and use of the work presented here by other re-
searchers and end users, the source code of the modified
generic PCI driver and the user-space drivers for the IP
cores used in the accelerator will be made available at
http://github.com/epi/altpcie.
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Abstract 
 

The Tile Calorimeter (TileCal) is a 
subdetector of the ATLAS detector of CERN. It 
provides accurate measurement of the energy of 
particle jets resulting from proton-proton collisions 
that occur in LHC (Large Hadron Collider) 
experiments, measurement of Missing Transverse 
Energy and identification of low-pt muons. The 
TileCal has a fast electronics system (front-end 
electronics) responsible for acquisition, processing, 
conditioning and digitalization of signals from the 
calorimeter, and sends data for the back-end 
electronics. A tester, called Mobile Drawer Integrity 
Checking System (MobiDICK) is used to check the 
correct behaviour of the front-end electronics of the 
Tile Calorimeter. The new version of this tester 
communicates with a user’s computer via an 
Ethernet interface implemented in a FPGA (Field 
Programmable Gate Array). Validation and 
performance tests of the Ethernet interfaces 
available to implement in FPGAs were required to 
determine the most suitable for the tester. The data 
coming from the front-end electronics via optical 
connections (using the S-Link protocol) feeds an 
interface called G-Link, which includes a CRC 
(Cyclic Redundancy Check) module to check the 
integrity of received data. 

In this paper those Ethernet experiments 

and the CRC development are presented, as well as 

their FPGA implementation. 

1. Introduction 
 

The LHC collider, at CERN, is a circular 
structure with 27 km of perimeter. The main goal of 
LHC is to collide two beams of protons or heavy 
ions travelling in opposite directions. The particle 
beams travel inside the ring of the accelerator tube in 
which vacuum is established. The protons are 
accelerated and kept in the centre of the tubes by a 
magnetic field generated by powerful 

superconducting magnets, cooled by a suitable 
cryogenic system. The collisions occur at key points, 
exactly at the locations of the LHC detectors. The 
protons travel in bunches that intersect in the key 
points with a frequency of 40 MHz. The ATLAS is 
one of the detectors installed in the LHC.  

The MobiDICK is a mobile tester used to 
check the front-end electronics of the hadronic 
calorimeter TileCal of the ATLAS detector. The 
electronic systems that MobiDICK will test are 
diverse, and so versatility and ease of maintenance 
must be ensured. These specifications led to the use 
of reconfigurable components as a base of this tester. 
The new tester uses a ML507 board from Xilinx 
equipped with a Virtex-5 FPGA. It communicates 
with the user’s computer (operator) via an Ethernet 
interface, using the TCP/IP protocol. At the 
development time of the MobiDICK tester, no 
absolute requirements were imposed regarding the 
area of implementation or link speed for the Ethernet 
module. It was needed an Ethernet module 
completely functional and as fast as possible. Two 
Ethernet modules were available in the Xilinx’s 
tools, and this fact led us to evaluate both and check 
their functionality. One of the functions of 
MobiDICK is to test the readout from the front-end 
electronics, by checking incoming data. An 
algorithm based on Cyclic Redundancy Check is 
already implemented in the TileCal back-end to 
check the integrity of data sent by the front-end, but 
in test mode the front-end electronics will 
communicate with the MobiDICK, and so the same 
module should be implemented also in MobiDICK. 

This paper is structured in 7 sections. In 
section 2 is presented the TileCal front-end 
electronics. Section 3 is dedicated to the description 
of the tester MobiDICK 4. The description of the 
Ethernet interfaces is in section 4. Section 5 is 
dedicated to the CRC module. In section 6 the results 
of the validation of the Ethernet interfaces and the 
CRC module are presented. Finally, in section 7 
there are the final considerations and conclusions 
about this work.   
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2. The TileCal Front-end Electronics 
 
The TileCal is a sampling calorimeter with 

steel as absorber medium and scintillating tiles as 
active material. In the LHC experiments, ionizing 
particles that cross the TileCal produce photons in 
the scintillators, and the intensity of these photons is 
proportional to the energy deposited by the particles. 
These photons are absorbed and carried by 
Wavelength Shifting Fibers (WLSFs) and then feed a 
set of photomultipliers (PMTs). The photomultipliers 
convert light signals into electrical impulses, which 
serve as input signals of the 3in1 cards in the front-
end electronics. These cards perform the 
conditioning and processing of those analog signals, 
and then they send them to the digitizer system 
where they are digitized and organized in data 
packets before being fed to the back-end electronics 
[1]. The TileCal analog signals are converted to 
digital signals with a sampling frequency of 40 MHz. 

The front-end electronics of the TileCal is 
organized into compact structures called Drawers 
(Figure 1). A combination of 2 Drawers forms a 
Super-drawer. Each Super-drawer is associated with 
a module of the TileCal, and is able to collect 
information from 32 or 45 channels of the detector.  

 

 
Figure 1: Configuration of the front-end electronics 

system of the Tile Calorimeter. 
 

 
Figure 2. Front-end electronics. 

   
The key component in a Super-drawer is the 

motherboard. It provides low voltage power and 
digital control signals to four digitizer boards, one 
Interface Board and to the circuits needed for trigger 
summation and distribution. One Super-drawer has 
two motherboards, which include all the electronics 
used for reading a full TileCal module. An Interface 
Board collects the sampled data from all the 

digitizers, serializes and transmits them to the back-
end electronics using optical links [1]. This process 
is illustrated in Figure 2. 

The integrity of the data received by the 
back-end is checked with a CRC algorithm. The 
DMU (Data Management Unit) is responsible for 
organizing the digitized samples in packets of data. 
There are 8 Digitizer boards in a Super-drawer, and 
each one has 2 DMU devices, so there are 16 DMU 
devices per Super-drawer. Each DMU builds its 
packet of data, computes two CRC values and 
appends them to the packet before it is sent to the 
Interface Board. The Interface Board computes again 
the CRCs over each packet of data of each DMU, 
checking their integrity. If there is no error, the 
Interface Board builds a packet containing all the 
DMU packets of data and computes a global CRC 
over all the data before sending it to the back-end. 
The back-end electronics computes again the CRC of 
each DMU data packet and of the global CRC, and 
compares them with the CRC values received. If the 
CRC computed by the back-end is equal to that sent 
by the front-end, there are no transmission errors. 
 
3. The MobiDICK 4 Tester 
 

The new version (4) of the MobiDICK is 
based on reconfigurable systems.  Figure 3 shows the 
architecture of this tester, which is composed by the 
following components [1]: 

 

 
Figure 3. MobiDICK 4 [1]. 

 
Development Board: it is a Xilinx ML507 board 
equipped with a Virtex-5 FPGA. This platform’s 
resources are a PowerPC 440 RISC microprocessor, 
some 4.25 Gbps GTX transceivers and a 
10/100/1000 Ethernet MAC. The ML507 also 
includes 256 MB of DDR2 RAM and configuration 
storage, such as platform flash devices or a Compact 
Flash card-based system configuration controller 
(System ACE Controller). 
 
High Voltage Board (HV): provides high voltage to 
the PMTs of the Super-drawers during tests. 
 
LED Board: provides the 20 V pulses necessary for 
calibrating the Super-drawer readout channels.  
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SFP: optical connector that provides optical fibers’ 
connection to the Interface Board of the Super-
drawer. 
 
CAN: two commercial adapters and a custom cable 
convert the RS232 output ports of the development 
board to the CAN bus interface of the Super-
drawers. 
 
Power Distribution Board: a commercial AC/DC 
converter and a custom PCB populated with many 
DC/DC converters provide several different voltages 
to the other boards of the MobiDICK. 

 
In the Virtex-5 FPGA, available on the 

development board, is implemented an embedded 
system, which runs server software responsible for 
performing electronic tests to the Super-drawer. The 
client (running on a laptop) sends commands to the 
server software, requesting MobiDICK to perform 
those tests. The server handles the requests, performs 
the tests and sends back the results. The Server and 
the Client communicate via an Ethernet interface 
implemented in that embedded system, using the 
TCP/IP protocol. 
 

 
Figure 4. Embedded system in the MobiDICK 4 [1]. 

 
Figure 4 shows the embedded system 

implemented in the MobiDICK 4. The main core is a 
PowerPC microprocessor running at 440 MHz. An 
embedded Linux with kernel 2.6.39 has been chosen 
as Operating System for the PowerPC, mainly 
because there is an important community supporting 
the microprocessor and there are available drivers for 
Xilinx IP cores. An automatic boot of the whole 
system (bitstream + kernel + root file system) is 
performed from the Compact Flash using the System 
ACE Controller. The ELDK 4.2 (Embedded Linux 
Development Kit) cross compiler tools are used for 
building the Linux OS image and for developing the 
applications [1]. The processor is connected to its 
peripherals using a 100 MHz Processor Local Bus 
4.6 (PLB). These peripherals are IP cores: either 
commercial and provided by Xilinx, or custom IP 
cores developed to fulfil specific needs. The custom 
boards of the test bench are interfaced to the 
embedded system by VHDL firmware modules in 

the FPGA side, and by application libraries that run 
on the server on the embedded side [1].  

This embedded system receives test 
requests (sent by the client), runs the server software 
to handle these requests, executes electronic tests and 
sends back the results via Ethernet. Two Ethernet 
interfaces were tested and validated in the scope of 
this work. The Glink block in this embedded system 
is the interface used to receive packets of data sent 
by the front-end electronics in the readout test. The 
SFP module is an optical connector which connects 
through optical fibers to the Interface Board of a 
Super-drawer. This communication is supported by 
the S-Link protocol, which uses G-Link devices as 
physical layer. In the back-end is implemented an 
ASIC G-Link receiver, the HDMP-1024, which is 
used to receive and de-serialize the data sent by a G-
Link transmitter, the HDMP-1032 in the front-end 
electronics.  The Glink block of the MobiDICK is an 
emulator of the HDMP-1024 receiver described in 
VHDL. This work also describes the implementation 
of a CRC module that checks the integrity of the data 
sent by the front-end electronics.  
 
4. Ethernet Interfaces 
 

The MobiDICK communicates with the 
user’s computer using Ethernet and the TCP/IP 
protocol. To perform this communication, a Media 
Access Controller (MAC) core has to be 
implemented in the embedded system of the 
MobiDICK. Two MAC interfaces were available as 
Xilinx tools’ IP Cores: the Tri-Mode Ethernet Media 
Access Controller (TMAC) interface and the Ethernet 
Lite Media Access Controller (ELM) interface.  

The TMAC is an IP core which supports 
link speeds of 10, 100 and 1000 Mbps, and half-
duplex and full-duplex modes. The TMAC conforms 
to IEEE 802.3-2008 specifications [2]. The ELM 
supports link speeds of 10 and 100 Mbps, provides 
minimal functionality and conforms to the IEEE 
802.3 Media Independent Interface [3]. To test these 
two Ethernet interfaces, an embedded system 
developed around the softcore microprocessor 
MicroBlaze was deployed in a Xilinx Virtex-6 
FPGA on a ML605 board, as shown in Figure 5. The 
Ethernet interface selected after the tests was finally 
implemented in the MobiDICK 4 Motherboard (note 
that the tests were performed in a Virtex-6, while the 
deployment in the MobiDICK 4 is done in a Virtex-
5; however, this discrepancy didn’t cause any 
migration issues). 

The embedded system was developed using 
Xilinx’s Embedded Development Kit (EDK). The 
main core is the MicroBlaze, a Reduced Instruction 
Set Computer (RISC) optimized for Xilinx’s FPGAs 
[4]. The ML605 board has a Marvel M88E1111 
EPHY device as the physical layer for Ethernet 
communications and supports communications at 
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10/100/1000 Mbps. The connection with the outside 
world is implemented using a HFJ11-1G01E RJ-45 
connector. The connection between the MAC 
interface and the physical layer was implemented 
using the MII/GMII interface available in the ML605 
board. 

 

 
Figure 5. System implemented in a Virtex-6 FPGA to test 

the Ethernet interfaces. 
 
Ethernet-TCP/IP communication tests 

between a computer and the ML605/Virtex-6 with 
the embedded system were performed. The TCP/IP 
protocol is usually implemented as a service in the 
OS. In embedded systems it is usually used a 
lightweight implementation, called lightweight 
Internet Protocol (lwIP), which does not require an 
operating system; however, it can be implemented on 
top of an operating system.  

 
Module IP Core Version 

Microprocessor microblaze 8.00.b Bus plb_46 1.05.a Local Memory Bus lmb_v10 1.00.a Local Memory bram_block 1.00.a 
Local Memory 

Controller lmb_bram_if_cntlr 2.10.b 

UART xps_uartlite 1.01.a 

Ethernet Interface xps_ethernetlite 4.00.a 
xps_ll_tmac 2.02.a 

Timer xps_timer 1.02.a 
External Memory 

Controller mpmc 6.02.a 

Debug Module mdm 2.00.a 
Interrupt Controller xps_intc 2.01.a 

Clock clock_generator 4.01.a 
Reset proc_sys_reset 3.00.a 

Table 1: IP Cores used for the implementation of the 
embedded system in the ML605. 

 
Table 1 shows all the IP Cores used to 

implement the embedded system used to test and 
benchmark the two Ethernet interfaces.  
 
5.  The CRC Module  
 

During the test of the readout system, the 
MobiDICK connects to the Interface board of the 
front-end electronics of the TileCal via optical fibers. 

In these tests, packets of data are sent by the front-
end electronics to the G-Link interface of 
MobiDICK 4. The integrity of the data coming from 
the front-end is checked. A CRC algorithm for error 
detection, described in VHDL, is already 
implemented in the back-end, in Altera FPGAs, for 
checking data integrity. So, this module had to be 
implemented in the MobiDICK, but in a different 
FPGA, the Xilinx Virtex-5. 

CRC is widely used in communication 
systems. This algorithm allows the receiver of a 
message sent through a noisy channel to check if it 
was corrupted by noise. For this to be possible, the 
transmitter of the message computes the called CRC 
or Checksum of the message, and appends it to the 
message packet before sending. When the receiver 
receives the message, it computes again the CRC and 
compares it with the CRC appended to the message. 
If they are equal, there is no error in the transmission 
and the message is accepted, otherwise the message 
is discarded [6], [7].  

The front-end electronics of the TileCal 
performs three types of CRC computations: two for 
each DMU; and one global CRC over the data of all 
the DMU devices. 

 

 
Table 2. Specifications of the global CRC algorithm. 

 
In table 2 are presented the specifications of 

the global CRC algorithm as it is implemented in the 
TileCal, and consequently as it is implemented in 
MobiDICK 4. The specifications of the algorithm for 
the two CRCs of DMUs are presented in table 3. 
 

 
Table 3. Specifications of the algorithm for the CRC of the 

DMUs. 
 
The CRC module implemented in the 

MobiDICK 4 (Figure 6) checks data integrity by 
computing the two CRCs for each DMU and the 
Global CRC of each global packet sent by the front-
end. The CRC module of the back-end only checks 
the integrity of data, but the MobiDICK 4 also 
counts the errors using a set of 5 counters. 

The structure of the CRC module 
implemented at the back-end in Altera FPGAs is 
presented in figure 7. In this work, the goal was to 
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add the functionalities of error counting and evaluate 
this module in the motherboard of MobiDICK, the 
Xilinx ML507 with a Virtex-5.  
 

 
Figure 6. CRC module to check the integrity of data in 

MobiDICK 4. 
 

 
Figure 7. Structure of the CRC Module. 

 
The top level crc_check_link is composed of two 
sub-components: 
 
CRC_full_link: computes and checks the global 
CRC. It is composed by the CRCGEN module, 
which computes the global CRC, and by a state 
machine to detect the type of digital word (header, 
samples, CRC, etc.) sent by the front-end. 
 
DMU_crc_check: computes and checks CRCs of 
DMUs. It is composed by two internal components: 
DMU_crc and frame_CRC_DMU. The crcDMU 
accepts words of 32 bits to compute the CRC of 
DMUs, so the DMU_crc component organizes the 16 
bits words sent by the front-end in the 32-bits words 
required by the crcDMU component to compute the 
CRC of DMUs. The frame_CRC_DMU implements 
a state machine to detect the type of words (header, 
samples, CRC, etc.) sent by the front-end electronics. 
  
Inputs 
 

The input signal Nsamples conveys the 
number of digital samples sent per DMU device. 
These samples are 32-bit words sent by each DMU 
to the Interface Board of the front-end. The signal 
Ngains is a signal related with Nsamples; if Ngains = 
‘0’, the number of samples is 7, and if Ngains = ‘1’ 
the number of samples per DMU can take values up 
to 16. The 16-bit RX_D terminal is the input of the 
words sent by the front-end and the CRC 
computation is performed on them. The signal Reset 
resets this module. RX_CNTL is a control signal, 
which is activated when the G-Link interface 
receives the first word sent by the front-end. When 

activated, the CRC computation starts. The clock 
signal RX_CLK was used in the validation tests with 
a frequency of 40 MHz. 
 
Outputs 
 

There are 5 counters implemented in this 
module. The output signal Error_count is a 31-bit 
counter providing the number of global CRC errors 
found for all packets of data sent by the front-end.  

The front-end electronics performs two 
CRC computations for each DMU. It performs 
separately one CRC computation over the even bits 
of the words, and another CRC computation over the 
odd bits. So we have two 31 bit counters, one for the 
errors in the even bits and another for the odd bits: 
Error_DMU_even_count_total and Error_DMU_ 
odd_count_total. These two counters provide the 
number of errors for all packets of data received. 
There are another two 4-bit counters: Error_DMU_ 
Even_count, which provides the number of errors in 
each packet of data associated with even bits and 
Error_DMU_Odd_count, which gives the number of 
errors in each packet of data associated with odd bits. 

The signal Error indicates a global CRC 
error occurrence; it takes a value ‘1’ if it detects an 
error and ‘0’ otherwise. The signals Even_err and 
Odd_err indicate errors associated with the packets 
of data of DMUs, for even and odd bits, respectively. 
They are ‘1’ if there is a CRC DMU error and ‘0’ 
otherwise. The signal Link_end indicates the end of a 
packet; it takes the value ‘1’ when it detects the last 
digital word of a packet of data, and ‘0’ otherwise. 
 
6. Results 
 
6.1. Performance Tests of the Ethernet 
Interfaces 
 

In the performance tests was used the 
application Iperf, which evaluates the performance 
of the TCP/IP protocol in a network. This application 
was installed in the PC in order to communicate with 
the embedded system in the ML605 board. In all 
these tests it was used the Transmission Control 
Protocol (TCP) for the Transport Layer. 
 
Transmit test: to determine the rate of transmitted 
data, a lwIP Client application (developed in C) is 
executed in the embedded microprocessor which 
connects to the Iperf server in the computer.  The 
client sends packets of data continuously to the 
computer. Then Iperf determines the rate at which 
data are arriving. The maximum transmission rate 
achieved with TMAC was 101.93 Mbps, while with 
ELM it was 16.11 Mbps. 
 
Receive test: to determine the rate of received data, 
a lwIP server runs in the embedded microprocessor 
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and accepts connection requests sent by the Iperf, 
which now works as a client. The Iperf client 
transmits packets of data via Ethernet and determines 
the rate at which they are sent. The maximum rate of 
received data with the TMAC was 114.92 Mbps, 
while with the ELM core it was 12.28 Mbps. 
 

MAC Link 
Speed API 

Rate (Mbps) 
Transmit  Receive 

TMAC 

1 Gbps Raw 101.93 114.92 
Socket 35.56 20.91 

100 
Mbps 

Raw 53.6 52.67 
Socket 36.55 22.40 

10 Mbps Raw 9.00 9.00 
Socket 8.47 9.43 

Table 4: Results of performance tests for TMAC. 
 

MAC Link 
Speed API Rate (Mbps) 

Transmit  Receive 

ELM 

100 
Mbps 

Raw 10.52 12.28 
Socket 16.11 0.69 

10 Mbps Raw 8.17 8.30 
Socket 3.15 0.53 

Table 5: Results of performance tests for ELM. 
 

Tables 4 and 5 show some results of 
performance tests of the two Ethernet interfaces. We 
conclude that the TMAC IP Core provides better 
communication performance than the ELM IP Core. 
So we recommended the implementation of the 
TMAC IP Core in the MobiDICK 4. We validated 
these two Ethernet interfaces in the ML605/Virtex-6 
system, but the MobiDICK 4 uses a ML507/Virtex-
5. However there is no incompatibility of versions 
because the two Ethernet interfaces are both 
available in Xilinx’s EDK as IP Cores, ready to be 
implemented in any Xilinx’s board. The ML507 and 
the ML605 use the same device as physical layer for 
Ethernet and we use the same bus (PLB), so we 
expect that the performance results presented in this 
work are (relatively) similar to those obtained with 
the ML507 board of the MobiDICK 4. 
 
6.2. PING Tests of the Ethernet Interfaces 
 

The accessibility test of the Ethernet 
interfaces was performed with PING (Packet 
INternet Groper) tests. This test is based in the 
Internet Control Message Procotol (ICMP) [5]. In 
this test the computer sends packets to the board, 
called echo requests, and waits for an echo reply. We 
use the lwIP echo server running on the embedded 
microprocessor in the ML605 to answer to the echo 
requests sent by the computer. PING tests provide 
statistics of packet losses in the network, so we can 
have an estimate of the accessibility of the two 
Ethernet Interfaces [5]. In all the PING tests 
performed, there were no losses of packets in the 
network for both Ethernet interfaces. 
 

6.3. Validation Tests of the CRC Module 
 

The CRC module was integrated in the 
Glink block of the MobiDICK 4 and was validated in 
a real situation of data acquisition from a Super-
drawer located in a laboratory at CERN.  
 

 
Figure 8. System implemented at a CERN laboratory to 

validate the CRC module. 
 

Figure 8 illustrates the system that tests the 
Glink block and the CRC module. The ML507 
board, loaded with the embedded system of 
MobiDICK 4, is connected to a Super-drawer via 
optical links. The user’s computer and the 
MobiDICK 4 were connected to the Internet network 
of CERN, which allows interacting with the 
MobiDICK 4 via Telnet. A C++ application running 
in the embedded system sends a command, 
requesting the Super-drawer to send data.  The Glink 
block of the MobiDICK 4, with the CRC module, 
checks the integrity of the data and counts the errors, 
saving the counter’s values in the respective 
registers. This application orders the microprocessor 
to read these registers and to send the results to the 
user’s computer Telnet terminal. Figure 9 shows    
registers being read to show the statistics of errors in 
the packets sent by the Super-drawer. 
 

Figure 9. CRC results when the counter registers are read. 
 

We also use the Chipscope Analyzer from 
Xilinx to monitor the signals of interest inside the 
FPGA, and to verify if the CRC module is able to 
compute properly the global CRC and the two CRCs 
for each DMU. In figure 10 is presented an example 
of the validation of global CRC computations. In this 
test we acquire a packet of data without error. The 
global CRC sent by the front-end was 0xBDAB (in 
the red box), while the computed global CRC is 
0xD5BD. The CRC module inverts the order of bits 
of the computed CRC before comparing it with the 
CRC sent by the front-end. If the order of the bits in 
0xD5BD are reversed (starting with the least 
significant bit and ending with the most significant 
bit) we get the value 0xBDAB, the same value sent 
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by the front-end electronics. This shows that the 
CRC module computes the correct global CRC, as 
expected. 

We also performed a test to check if the 
CRC module was able to compute properly the 
CRCs of the DMUs. The CRC module, as it is 
implemented in the back-end, did not behave as 
expected. Figure 10 shows a result of this incorrect 
behaviour. The CRC values sent by the Super-
drawer are 0x1A39 (even bits) and 0xE4C3 (odd 
bits), in the red box. The computed CRC values are: 
0x7C74 (even bits) and 0x54B1 (odd bits), in the 
black box, which are different from those sent by the 
Super-drawer. The Interface Board of the front-end 
sends 32-bit words divided in the middle, forming 
digital words of 16 bits. Internally the CRC module 
has to reorganize these 16-bit words into 32-bit 

words before starting the CRC computations for the 
packets of data incoming from the DMUs. In this 
validation test we found that such organization was 
not being done properly, because it doesn’t replicate 
the current implementation of CRC in the back-end 
electronics, in Altera FPGAs. A new version of the 
MobiDICK’s CRC module was developed to 
overcome this incorrect behaviour and is waiting to 
be tested in a real scenario, as soon as possible.  

In these tests we use a clock with a 
frequency of 40 MHz in the CRC module, well 
below the maximum frequency of 376.40 MHz 
allowable for this module (post-synthesis value given 
by the Xilinx development tool.) The hardware 
resources are presented in table 6. The most used 
resources are IOBs (22 %). 

 
Figure 10. Results obtained in the test and validation of the computation of the global CRC. 

 

 
Figure 11. Results obtained in the test and validation of the computation of the CRCs of DMUs. 

 

 
Table 6. Resources used in the implementation of the CRC module in a Virtex-5 FPGA.
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7. Conclusion 
 

This paper describes two contributions to 
the development of communication modules for a 
new tester of the ATLAS Tile calorimeter front-end 
electronics. These contributions consist in the 
implementation and test of Ethernet interfaces 
deployed in a FPGA, and in a VHDL module able to 
check data integrity. This new tester, called 
MobiDICK 4, is implemented around a 
reconfigurable device, a Virtex–5 in a Xilinx ML507 
board. The MobiDICK 4 includes a server and a 
client. The client runs in a laptop and sends 
commands to the server, requesting electronics tests, 
while the server runs in an embedded system 
implemented in the motherboard and is responsible 
for handling the requests, performing the electronics 
tests and sending back the results to the client. Client 
and server communicate via Ethernet. 
 From the results of the validation of 
Ethernet interfaces, we conclude that the TMAC IP 
core is more suitable to be implemented in the 
MobiDICK 4 than the ELM IP core. We found, as 
expected, that TMAC provides better performance 
than the ELM. However, the ELM uses less FPGA 
resources than the TMAC, but our recommendation 
elects speed link performance as the main key for 
selecting the interface. 

The CRC module implemented in the back-
end electronics of the TileCal was migrated to the 
MobiDICK 4 and validated in a real situation of data 
acquisition from a Super-drawer in a CERN 
laboratory. The results have shown that it was 
working properly, but partially. A new version has 
been developed to overcome the incorrect behaviour 
found in the CRC module and to mimic its present 
implementation in the back-end electronics, in Altera 
FPGAs; at present, the new module waits to be tested 
as soon as possible. 
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André Costa Lima
Faculdade de Engenharia

Universidade do Porto
ee06223@fe.up.pt

João Canas Ferreira
INESC TEC and Faculdade de Engenharia

Universidade do Porto
jcf@fe.up.pt

Abstract

Cellular automata (CA) have been used to study a great
range of fields, through the means of simulation, owing to
its computational power and inherent characteristics. Fur-
thermore, CAs can perform task-specific processing. Spa-
cial parallelism, locality and discrete nature are the main
features that enable mapping of CA onto the regular archi-
tecture of an FPGA; such a hardware solution significantly
accelerates the simulation process when compared to soft-
ware. In this paper, we report on the implementation of a
system to automatically generate custom CA architectures
for FPGA devices based on a reference design. The FPGA
interfaces with a host computer, which initializes the sys-
tem, downloads the initial CA state information, and con-
trols the CA’s operation. The user interface is are provided
by a user-friendly graphical desktop application written in
Java.

1. Introduction

Cellular automata have already been studied for over
half a century. The concept was introduced by John von
Neumann in the late forties when he was trying to model
autonomous self-replicating systems [1]. Since then, CA-
based architectures have been extensively explored by the
scientific community for studying the characteristics, pa-
rameters and behaviour through simulation of dynamic
complex systems, natural and artificial phenomena, and
for computational processing [2]. Specific-application ar-
eas are, e.g., urban planning, traffic simulation, pseudo-
RNG, complex networks, biology, heart modeling, image
processing, sound waves propagation and fluid dynamics.
Furthermore, CA is also a possible candidate for future al-
ternative computer architectures [3].

Nowadays, the need for creating simulation environ-
ments of a high degree of complexity to describe rigorously
the complete behaviour of a system, and for developing al-
gorithms to process data and perform thousands of calcu-
lations per second, typically incurs a high computational
cost and leads to long simulations. Taking advantage of
multi-core architectures, with parallel programming, to as-
sign multiple task execution to different threads, enables
significant software optimizations and accelerated execu-
tion. However, parallel programming in software is a com-

plex task, as several aspects such as concurrency must be
taken into account, and may be time-consuming. CA of-
fer simplicity when it comes to define each cell’s func-
tionality and owing to its inherent massive spacial paral-
lelism, locality and discrete nature, such systems are natu-
rally mapped onto the regular architecture of an FPGA, or-
ganized in reconfigurable logic blocks; it is possible to per-
form complex operations with efficiency, robustness and,
most importantly, decrease drastically the simulation time
with high-speed parallel processing. Thus, as a reconfig-
urable hardware device, FPGA platforms are a very good
candidate for CA architecture implementations on hard-
ware: each cell functionality can be implemented in look-
up tables, its state stored in flip-flops or block-RAM, and
it is possible to update the state of a set of cells in parallel
every clock cycle.

In this paper, we report on the implementation of a sys-
tem to automatically generate CA architectures on a tar-
get FPGA technology, a Spartan6, the characteristics and
rules of which are specified by the user through a software
application, that also allows controlling the operation, ini-
tializing and reading the state of the CA. The implementa-
tion results show that it is possible to achieve a speed-up of
168, when comparing to software simulations, for a lattice
size of 56×56 cells for the Game of Life [4] [5]. Further-
more, we achieved lattice dimensions of 40×40 and 72×72
cells for the implementation of a simplified version of the
Greenberg-Hastings [6] and lattice gases automata [7], re-
spectively.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the key characteristics and properties of
CA. Section 3 presents some of the existing work related
to implementations of CA in FPGA platforms. Section 4
describes the overall system architecture, its features and
specification. In section 5 the implementation results are
summarized and discussed. Finally, section 6 concludes
this paper and future developments are proposed.

2. Cellular automata

Cellular automata are mathematical models of dynamic
systems that evolve autonomously [8]. They consist in a set
of large number of cells with identical functionality with
local and uniform connectivity, and organized in a regular
lattice with finite dimensions [9], for e.g., an array a matrix
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or even a cube for the multidimensional scenario; bound-
ary conditions, that can be fixed null or periodic (the lattice
is wrapped around), define the neighbourhood of the cells
located at the limits of the lattice. For square-shaped cells,
the neighbourhood is typically considered to be of Moore
[10] or von Neumann [11] types which are applicable to 2D
and 3D lattices; considering a single cell, the local neigh-
bourhood is defined by the adjacent cells surrounding it,
i.e. the first order or unit radius neighbourhood. Thus, for
2D lattices, the Moore-type neighbourhood includes all the
8 possible in a square shape and the von Neumann-type
neighbourhood includes 4 cells in a cross shape. Each cell
has a state that can be discrete or real-valued and the up-
date occurs in a parallel fashion in discrete time steps, i.e.
every cell in the lattice update its state simultaneously; at
the time instant ti, the cell states in the local neighbour-
hood of a cell c are evaluated, and the next state for c, at
ti+1, is determined according to its deterministic state tran-
sition rule that is a function combining arithmetic or logical
operations. However, this rule can be probabilistic if it de-
pends on a random nature variable; in this case, the CA is
considered to be heterogeneous as the cells has no longer a
homogeneous functionality.

3. Related work

Vlassopoulos et al. [6] presented a FPGA design to
implement a stochastic Greenberg-Hastings CA (GHCA),
which is a model that mimics the propagation of reaction-
diffusion waves in active media. The architecture is orga-
nized in group, block and cell partitions in a hierarchical
way across the FPGA. Each group contains a set of blocks
and is processed in parallel as a top-level module; within
a group, blocks are processed sequentially. Each block
contains a set of cells that are distributed around BRAM-
type memory resources, to maximize its usage, and con-
trol logic. Each cell contains a random event generator cir-
cuit (LFSR), which is a requirement of the GHCA model,
state control logic and registers. Additional BRAMs are
used to handle boundary cells data, which are shared with
a subset of groups’ blocks. The FPGA environment inter-
faces with an external host machine to initialize the CA,
collect results and control its operation. A Xilinx Virtex 4
(XC4VLX100-10FF1513) FPGA device was used operat-
ing at a frequency of 100 MHz; with a lattice of maximal
dimensions of 512×512 cells, 26 % of the total slides avail-
able and 136 out of 240 were required for implementation.
As for the benchmark platform, an Intel Core 2 Quad CPU
Q9550 machine running at 2.83 GHz was used; with a lat-
tice size of 256 256 cells and a simulation period of 104

time steps, it was obtained a speed-up of approximately
1650. However, as the effective parallelism of the solution
is 128 cells per cycle it means that it takes 512 clock cy-
cles to perform a single iteration of the CA with 4 bits per
cell. Considering that a several number of memory write
and read operations are required per iteration, especially
with regards to reading and storing boundary data, this has
a negative impact on the total simulation time.

Shaw et al. [7] presented a FPGA design to implement

a lattice gas CA (LGCA) to model and study sound waves
propagation. LGCA are models that allow to emulate fluid
or gas dynamics, i.e. particle collisions, and are conve-
niently implemented with digital systems; thus, the real-
world physics are described in discrete interactions. The
authors describe the behaviour of each cell with a simple
set of collision rules. For simplicity, they consider unit ve-
locity and equal mass for every particle and four distinct di-
rections, i.e. a typical von Neumann neighbourhood. The
current state of each cell indicates the direction in which
existing particles are traveling according to the collision
logic implemented by them; thus, 4 bits are required to
represent the outgoing momentum for each direction with
the 9 possible combinations: a pair (vx,vy) of integer val-
ues from (−1,−1) to (1,1). The collision logic function
that evaluates a particle stream and outputs those that carry
on in the next cycle is defined as follows. A particle trav-
els to the east if a) a particle arrives from the west except
if there is an east-west head-on collision and b) if there
is a north-south head-on collision. An head-on collision
involves only 2 particles traveling in opposing directions.
This definition is analogous to the remaining directions.

The design was implemented in a SPACE (Scalable Par-
allel Architecture for Concurrency Experiments) machine
[12] which is an array of Algotronix CAL FPGAs whose
technology is outdated by now. Results showed that it was
possible to reach 3×107 cell updates per second, 2.2 times
lower than two CAM-8 modules. CAM (CA-machine) [13]
[14] is a dedicated machine whose architecture is optimized
for high-scale CA simulation; it was developed by Tom-
maso Toffoli and Normal Margolus and it received a lot of
attention.

4. System architecture

The overall architecture of the system described in this
work consists of a digital system design for a FPGA device
and software desktop application, which is a graphical tool
for the system user that provides an interface to control the
hardware operation, a representation of the CA to initialize
and read its state map, and the generation of bitstream files
each one equivalent to a single custom CA specification.
Thus, our approach allows the system user to parameter-
ize the hardware architecture according to its needs. Pre-
built templates, that describe in Verilog the circuits of sep-
arate modules, are used as a reference to integrate complete
CA specifications in the design. The CA characteristics are
template configuration parameters, i.e. lattice dimensions,
neighbourhood type and number of bits per cell, and the
state evolution rule is the body of the cell modules that de-
termine its functionality.

Currently, the architecture of the hardware system is
flexible enough to support the following features: multidi-
mensional lattices (1D and 2D), Moore and von Neumann
neighbourhoods, periodic or null lattice boundary condi-
tions and unconstrained number of state resolution bits per
cell; the lattice width is, however, constrained to multiples
of 8. The state evolution rule can be specified with logical
and arithmetic operations at the bit level. Furthermore, it is
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also possible to provide different rules to different rows of
cells in the lattice, which is an advantage to simulate mul-
tiple 1D CAs in parallel. Two operation modes are sup-
ported: run-through for n iterations or step-by-step.

4.1. Hardware specification

4.1.1. Global architecture

The overall hardware architecture is shown in figure 1.
The FPGA domain it is further divided in two distinct sub-
systems: the CA core and the soft-core processor MicroB-
laze. The MicroBlaze is used to transfer via RS-232 the
cells state data, by accessing data stored in BRAM in the
CA core, from and to the host software application and im-
plements a simple protocol to do so. Moreover, the audio
codec AC’97 is used for demonstration purposes to gen-
erate melodies according to the state map of the CA. The
melody generator function receives the state data of a row
of cells and determines the bit density, i.e. the number of
bits equal to 1 over the total number of cell bits in the row.
The function output is the note frequency to be played gen-
erating a square wave. This frequency is as high as the bit
density; on a typical piano setup (88 keys), 100 % bit den-
sity is equivalent to approximately 4 kHz.

Our development platform, the Atlys board from Dig-
ilent, has, in addition to the Spartan-6 FPGA, numerous
peripherals, including the audio codec chip that is used as a
sound output. The hardware controllers for the audio codec
and the UART are provided by Digilent and Xilinx, re-
spectively; both already implement an interface to the PLB
(bus). For simplicity, the corresponding available software
drivers were used with the MicroBlaze CPU.

4.1.2. CA core architecture

The CA core is our custom hardware and contains the
necessary modules to control the CA operation, initialize,
read and hold its current state. The CA logic module con-

tains all the generated cells for a custom specification and it
is not run-time configurable, i.e., it not possible to change
the CA characteristics, structure or rules. Thus, every sin-
gle specification is final until a newer one is provided and
its corresponding bitstream generated.

Every single row of cells is generated independently as
each one is constructed from a different Verilog module.
Even though the top-level description and reference logic
of every single cell is identical, for each row of cells the
functionality is not necessarily the same, as mentioned in
the architecture features. However, all the cells in the lat-
tice are interconnected with each other and the number of
interconnects of each cell depends on the neighbourhood
type: 4 for von Neumann and 8 for Moore types. The inter-
connects are buses whose width is defined by the number of
bits per cell. Therefore, a single cell can have 4 or 8 inputs
and always one output to pass its state to its neighbours.
In case of 1D CA, each cell always has 4 inputs. The cell
architecture is described in detail in section 4.1.3.

To initialize and read the state of the CA, as well as to
pass cell data from one boundary to the opposite bound-
ary, input (IB) and output (OB) external buses, connected
to the cells on the edge of the lattice, exist. Each bus has
a different width, regardless of the number of bits per cell,
and it may only depend on the neighbourhood type and lat-
tice structure. Each bus is indexed b by b bits, from IB and
OB, forming a neighbour boundary interconnect that corre-
spond to the state data of different cells along it. For exam-
ple, in a 2D scenario with a von Neumann neighbourhood
each boundary cell has one boundary interconnect, except
the corner cells that require two. On the other hand, for a
Moore neighbourhood each boundary cell has three bound-
ary interconnects but the corner cells require five. Both IB
and OB are connected to each other, in case of a periodic
boundary, and are redirected by the boundary control mod-
ule whenever needed. For a null boundary, IB is connected
to the ground. This is explained with more detail in the
operation modes below.

Figure 2 shows a more detailed view of the internals of
the CA core with focus on the modules interconnects, bus
widths and operation modes.

The cell state data is written and read to and from two
dual-port BRAMs, one used as an input memory and an-
other as an output memory. A 32-bit port is used to inter-
face with the PLB (bus) and a 8-bit port is used internally
by the core. Two shift-register (SR) modules are used in or-
der to parallelize (SIPO) chunks of c× b bits and serialize
(PISO) chunks of 8 bits of cell state data to be read from
and written to memory, respectively, where c is the num-
ber of lattice columns and b the number of bits per cell.
The SIPO SR has an 8-bit input to read data from the in-
put BRAM and a output of c× b bits, which is the total
width in state bits of a row of lattice cells. Each stage of
the SR has a 8-bit depth and such amount of data should
be shifted whenever a read from memory and a write in the
SR are performed. The PISO SR has an input of c×b bits
and a 8-bit output to write data to the output BRAM; the
functionality and structure are identical to prior SR. The
length of both SRs depends on the lattice dimensions and it

ISBN: 978-972-8822-27-9 REC 2013 53



SIPO Shift-register

PISO Shift-register

FSM

rule

shift

load

shift

shift

load

select

select

b x c b x c

b x c

BRAM

BRAM

enable

address

enable

write enable

8

8

12

address

12

32

32

load_ca
step
start
stop

fetch_row
perform_iter

n_iter 32
load_done
row_read
rows_read

max_iter

Figure 2. Detailed view of the cellular automata core

is given by (c×b)/8. Thus, the number of columns of the
lattice is constrained to multiples of 8. The reason for this
is to make it easier to manipulate data transfers and organi-
zation for this memory configuration and processing.

The boundary control module consists of several multi-
plexers to redirect boundary data buses, the IB and the OB,
depending on the CA operation mode, i.e., reading, initial-
izing or iterating. In the first two modes, the lattice rows are
shifted in a circular fashion, from top to bottom, as state
data is read from or written to the cell’s memory and, at
the same time, to the I/O memories, accordingly, via SRs.
After the reading operation, the state map of the CA re-
mains as it was before. In the latter mode, the multiplexers
redirect the OB to the IB wrapping around the lattice and,
every clock cycle, a new state for every cell in the lattice
is computed. In the iteration mode, the next state is always
computed until the simulation time reaches n time steps;
if the step-by-step mode is active, the simulation halts af-
ter every iteration until further order is given to continue,
however it is limited as well to n time steps. In the step-by-
step mode, the state map is read every iteration overwriting
the previous data that was stored in memory; in the run-
through mode, the state map is only read at the end of the
simulation. A finite state machine (FSM) is responsible
for controlling all the core modules, register operation re-
sponses and listen to user command signals from a control
register bank (CRB). The bank is used to synchronize op-
erations between the Microblaze and the FSM as shown in
Figure 1.

4.1.3. Cell architecture

The module that describes the cell architecture is unique
but it is replicated c×r times, where c and r are the number
of columns and rows of the lattice, respectively. It consists
of a sequential circuit to hold the cell’s state and a com-
binatorial circuit that implements the state transition rule.
Again, an input bus and an output bus exist to receive the
neighbour cells state data and pass the next state to them,
respectively. The input bus has a width of 4× b or 8× b
bits for a Moore and von Neumann neighbourhood, respec-

tively. Each b bits are the state bits of the cells adjacent to
a central one. For controlling, two additional 1-bit signals
are provided and are common to every single cell. One
of them enables the state transition rule (iteration mode)
and the other controls the direct loading of the state data
from the cell located north (reading and initializing modes).
Both signals are fed to two multiplexers; when neither of
them is active, the cell is idle and its state remains as it is.

4.2. Software specification

The software application was written in Java, provides
a simple and friendly GUI and acts as the front-end to the
user of the hardware system with a high-level of abstrac-
tion of technical details. This tool is capable of running
a typical FPGA Design Flow to produce a bitstream file
equivalent to the custom CA specification. This process
is automatic and transparent to user as it occurs in back-
ground by executing existing scripts. Each bitstream file is
saved in a separate directory; an existing bitstream can be
programmed any time. However, the current version of the
tool, besides providing the features mentioned in section 4,
can only generate bitstream files for a Spartan6 as the ref-
erence design was built for that FPGA device in specific.
However, the number of generated bitstreams is unlimited.

The GUI of the software tool is shown in figure 3. The
characteristics of the CA can be specified by filling in the
text fields with the desired values and check box marks. On
the other hand, the state transition rule must be described
textually with Verilog HDL and two text areas are used for
this purpose. The main one is used to explicitly indicate
the state register update rule of a cell, and the other one is
provided for additional optional supporting logic. To avoid
knowing the input and output buses names from the Verilog
module, the tool provides a simple set of tags that allow
to reference quickly b bits of any neighbour interconnect.
Upon saving the specification, each tag string that is found
is replaced by its interconnect reference in the module de-
scription, and the specification is integrated in a copy of
the pre-built cell template module file located in the work-
ing directory. This copy is then included in the directory
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Figure 3. Graphical user interface of the software tool

where all the system module files are kept; each one of
these files describe the functionality of a row of lattice cells.
As for the CA characteristics, these are saved directly in the
header files that are included in the core modules.

The serial communication parameters that are config-
urable are the COM port and the baudrate. However, the
baudrate is fixed in the design at 460800 bps which is lim-
ited by the UART controller. A set of buttons in the GUI
allow to interact with the FPGA once a connection is estab-
lished. These buttons call functions that implement the op-
erations modes and the protocol defined, that the Microb-
laze implements as well, to send commands, transmit and
receive cell’s state data.

To initialize and represent the state map of the CA, a
graphical editor that maps cell states to colours, accord-
ing to a custom palette, is provided. This utility is capable
of representing a lattice with a dimension up to 200×200
cells, which is the maximum supported by the zooming
function. Given that the representation area was chosen
to be limited, a dragging capability was added. In addi-
tion to that, the editor supports a fast paint mode that al-
lows switch a cell state quickly by just dragging the mouse
over the selected area instead of clicking. Nevertheless, to
change a cell state with the fast paint mode disabled re-
quires a click. For easier navigation when dragging the
lattice, the coordinates of the cell pointed by the cursor are
indicated aside. Finally, a custom palette builder enabled
the representation of any given state with a RBG-specified
colour; colour palettes can be saved for future use.

5. Results

5.1. Implementation and benchmarking

The architecture was implemented on a Xilinx Spartan-6
(XC6SLX45) FPGA running at 66 MHz. For initial bench-
marking, we used the Game of Life algorithm which is a
bidimensional CA model to simulate life. Each cell is ei-
ther dead or alive, therefore a single bit is required to repre-
sent the state; a cell that is alive remains so if either two or
three neighbours are alive as well; a dead cell with exactly
three neighbours alive is born; otherwise, the cell state re-
mains unchanged. A Moore neighbourhood with a periodic

boundary condition is used.
Tables 1 and 2 show the running times on several lat-

tices for two different numbers of iteration. Iteration char-
acteristics are summarized in tables 3 and 4. The hardware
simulation time is given by tHW = n/ fCLK , where n is the
number of iterations and fCLK the clock frequency, which
is the equal to the effective computation time, tc.

The implementation results refer to the Post-PAR imple-
mentation which means that the presented values are not an
estimation. The percentage of the resources occupied in-
clude not only our custom CA core, but the Microblaze and
the UART controller as well; the audio codec controller is
not included in these implementation results as it is an ex-
tra feature. The computer has an Intel Core 2 Quad Q9400
running at 2.66 GHz and the software application is XLife
[15]. Results show that the simulation time on hardware
does not depend on the lattice size, but only on clock fre-
quency (which depends on cell complexity).

We have also evaluated implementations of simplified
versions of the Greenberg-Hastings CA [6] (without ran-
dom event generator) and of the lattice gas model CA [7].
The results are presented in tables 5 and6, and tables 7
and8], respectively. Both rules require 4 bits per cell, how-
ever the neighbourhood types are different; the GHCA uses
a Moore one and the LGCA uses a von Neumann one.

From the results shown in tables 1 and 2, we can see
that both exhibit almost constant speed-ups for different ar-
ray sizes; although not shown here, the same behaviour was
observed for a lower n. Thus, we obtain a linear relation-
ship between speed-up and array size. Also note that the
hardware simulation time is constant regardless of the di-
mensions, which results from using just of a single clock
cycle per iteration.

5.2. Data transfer time analysis

The results of subsection 5.1 related to hardware simu-
lation time only take into account the CA computation time
(when the CA is iterating). In order to provide a more ac-
curate and fair comparison as far as benchmark goes, in
this subsection we present a detailed analysis on how data
transfer times impact the obtained speed-up figures. We are
now going to consider not only the computation time (tc),
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Benchmark — n = 108 iterations

Lattice HW (s) SW (s) speed-up

32×32 1.5 59.2 39
40×40 1.5 110.8 74
56×56 1.5 251.8 168

Table 1. Benchmark results for Game of Life per-
forming 108 iterations.

Benchmark — n = 109 iterations

Lattice HW (s) SW (s) speed-up

32×32 15.0 590.7 39
40×40 15.0 1103.5 74
56×56 15.0 2490.9 166

Table 2. Benchmark results for Game of Life per-
forming 109 iterations.

Implementation

Lattice FF (27,288) LUT (54,576)

32×32 3,083(5.6%) 10,114(37.1%)

40×40 3,685(6.8%) 18,449(67.6%)

56×56 5,243(9.6%) 24,818(90.9%)

Table 3. Implementation results for Game of Life —
FPGA resources occupied

Implementation

Lattice Frequency (MHz)

32×32 85.7

40×40 72.8

56×56 69.3

Table 4. Implementation results for Game of Life —
maximum frequency

Implementation

Lattice FF (27,288) LUT (54,576)

24×24 4,503(8.3%) 10,558(38.7%)

32×32 6,366(11.7%) 17,071(62.6%)

40×40 8,717(16.0%) 23,854(87.6%)

Table 5. Implementation results for Greenberg-
Hastings CA — FPGA resources occupied

Implementation

Lattice Frequency (MHz)

24×24 71.4

32×32 68.7

40×40 69.2

Table 6. Implementation results for Greenberg-
Hastings CA — maximum frequency

Implementation

Lattice FF (27,288) LUT (54,576)

56×56 14,989(27.5%) 15,394(56.4%)

64×64 18,894(34.6%) 19,295(70.8%)

72×72 23,311(42.7%) 23,870(87.5%)

Table 7. Implementation results for lattice gases
CA — FPGA resources occupied

Implementation

Lattice Frequency (MHz)

56×56 76.7

64×64 69.4

72×72 77.2

Table 8. Implementation results for lattice gases
CA — maximum frequency
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r× c TB (ms)

24×24 1.25

32×32 2.22

40×40 3.47

48×48 5.00

56×56 6.81

64×64 8.89

72×72 11.25

Table 9. Time required to transfer cell data for b = 1

but also a) the time it takes to write (CMw ) and read (CMr )
data from the CA array of flip-flops to and from the mem-
ory, and b) the time it takes to transfer the initialization data
from the PC to the FPGA (tsi ) and read the results back to
the PC (tso ). Other existing overheads are also exposed.

It was mentioned in section 4.1 that data is transferred
via RS-232 protocol and serial interface, with a baudrate
of B = 460800 bps limited by the provided controller. The
amount of data to transfer, regardless of initializing or read-
ing results back, is always the same given a certain CA
specification. Given that each cell contains b bits of data
distributed in a lattice of c columns and r rows, the time it
takes to transfer the data is given by

TB = tsi = tso =
r× c×b

B
(1)

Table 9 summarizes the time length to transfer data for
some lattice dimensions. All the data that is written to and
read from memories is held, for a certain amount of time,
in the shift-registers (SR) whose structure and functional-
ity was described in section 4.1. Shifting cells data is re-
quired whenever a new state is to be loaded or the current
state read from the array; such operations take time which
is worse for larger lattice dimensions and increasing num-
ber of bits of cells state data.

The time it takes to load and read the CA array, CMw and
CMr , respectively, are not equal for two reasons. The first
is that when reading data from memory there is always one
clock cycle of latency; the second is that the clock cycle to
load data to the first stage of the SIPO SR is the same when
a new row is loaded to the CA array, which means both op-
erations occur in parallel saving up one clock cycle; in fact,
more than one clock cycle is saved up, as it is explained
below, which determines that effectively CMw ≤ CMr . To
determine the expression of CMw , given in clock cycles,
we consider two different situations: when the SIPO SR
is fully loaded for the first time, whenever a initialization
operation begins, and then the subsequent loads. Then,

CMw = 1+
c×b

8
+ r+ r ·

(
c×b

8
−1

)
(2)

The first two terms refer to the first load: a clock cycle
of latency only taken into account once and then filling and
shifting (c×b)/8 stages of data of SIPO SR. The remaining
two terms refer to the subsequent SR loads: the first stage

is loaded r times as well as r rows are loaded into the CA
array, which saves up r clock cycles; the last term accounts
for the loading of the remaining stages also occurring for r
times. Simplifying the expression, we obtain

CMw = 1+
c×b

8
· (r+1) (3)

The expression of CMr is simpler to determine. When read-
ing the CA array, it is shifted for an amount equal to the
number of lattice rows, r, as well as to load a rows to the
PISO SR. Then, the PISO SR shifts data to be written to the
memory, a number of times equal to the number of stages
available, again, r times. As a downside, for this case, it is
required that all the data present in the SR is shifted out be-
fore loading up another row, in order to avoid loss of data,
which consumes more time. So,

CMr = r ·
(

1+
c×b

8

)
(4)

To obtain the effective time tMw and tMr , given in time units
and not clock cycles, we simply divide expressions 3 and 4
by fCLK , the clock frequency.

Table 10 summarizes the time length to load and read the
CA array for some lattice dimensions. We can observe that
as the lattice dimensions become larger, the time to load
the CA array tends to approximate to the time required to
read it. This is obvious if we think that the gain of r clock
cycles mentioned above becomes irrelevant as r× c grows.
In fact, when r,c → ∞ we obtain from expressions 4 and 3

CM =CMw =CMr ≈
r× c×b

8
. (5)

As we are interested in generating the largest lattices possi-
ble, we can use expression 5 to the determine a good ap-
proximation to the effective speed-up. From the results
presented on table 10, for a squared lattice, we can also
conclude that the time grows quadratically with (b/8) · x2,
where x is the side of the lattice. For a non-squared lat-
tice, the time grows linearly with the rows or columns. The
quadric behaviour shows whenever r → c or vice-versa.

As a final remark to this matter, we point out that there
are still two existing overheads on the side of the hardware
and software that were not measured accurately. From the
hardware side, a small amount of time is required to read
data from memory and write them to the serial buffer; this
is about the same time it takes to read data from the se-
rial buffer and write them to the memory. From the soft-
ware side, it is necessary to consider the time to read the
data from the graphical display buffer and write it to the se-
rial buffer and vice-versa. Even though data is represented
graphically as it is received, we believe that the software
overhead is longer. However, we are able to safely con-
clude that the data transfer over the serial interface is the
bottleneck.

The effective speed-up is determined solely by the lat-
tice dimensions and cell state data bits; it does not depend
on the present rule. Adding the computation time tc to the
expressions 1 and 5 we obtain the expression for the effec-
tive hardware simulation time for a single experiment, i.e.,
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r× c CMw CMr tMw (µs) tMr (µs) CMw/CMr

24×24 76 96 1.14 1.44 79.17%

32×32 133 160 2.00 2.40 83.13%

40×40 206 240 3.09 3.60 85.83%

48×48 295 336 4.43 5.04 87.80%

56×56 400 448 6.00 6.72 89.29%

64×64 521 576 7.82 8.64 90.45%

72×72 658 720 9.87 10.8 91.39%

Table 10. Time required to load and read the CA array,
reading and writing data to memory, with b = 1

initialize the array, iterate n times and read the results back
to the PC (hence the multiplication by 2):

tHWe f f ≈
n

fCLK
+2 · (r× c×b) ·

(
1
B
+

1
8 · fCLK

)
(6)

where n is the number of iterations. Using expression 6
and the results from tables 1 and 2, we can now determine
the percent reduction of the speed-up, ps. Considering a
lattice size of 56×56, for 108 and 109 iterations we obtain
a reduction of about 0.9% and 0.09%, respectively. For a
lattice size of 40×40 we obtain a reduction of about 0.46%
and 0.046%. However, as n decreases, ps increases drasti-
cally, e.g., for 105 iterations the percent reduction is 90.1%
and 82.3%. This is expected because the time required to
transfer data has a greater impact on a shorter computation
time. Thus, the linear relationship observed in section 5.1
between speed-up and dimensionality only occurs for large
values of n, where ps is not significant.

6. Conclusions and Future Work

The implementation described in this work performs the
evaluation of the whole CA array in parallel, and consti-
tutes a fully functional and flexible system. However, some
improvements can be envisioned. The synthesis and imple-
mentation processes run by the associated tools are auto-
matic, which means that there is no control of the mapping
of the CA to the FPGA resources. It is not guaranteed that
CA cells are uniformly distributed across the FPGA, which
leads to the degradation of performance and a lower de-
gree of compactness—there is a waste of resources as the
cells are spread irregularly and their neighbourhood inter-
connections have different lengths.

The major advantages of CA architectures are its lo-
cal connectivity and spacial regularity, which allow excep-
tional performance on hardware. In future, solutions to op-
timize distribution and allocation of FPGA resources need
to be investigated, for example, at the floorplanning level.
Moving on to a multi-FPGA scenario with greater capacity,
based, for instance, on Virtex-6 devices, would enable the
support of larger lattices.
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Abstract
The elaboration of computational blocks using declara-

tive models, typical of functional languages, allows the use
of a parameterized template for the hardware design. This
paper shows how such a template can be created, for the
hardware implementation of computational blocks based
on a declarative model, and how it can be used to provide
design space exploration alternatives and hardware accel-
eration for Erlang based embedded systems. The template
uses a flexible TCL preprocessor for the HDL generation
and control of the design space alternatives.

1. Introduction

The use of custom hardware to implement functional or
declarative languages has been studied by many. This re-
search was usually oriented to the complete implementa-
tion of functional languages in hardware, like the elabora-
tion of a LISP based microprocessor [1] or the the creation
of machines such as SKIM [2] and the parallel execution of
functional programs [3]. This area of research is a conse-
quence of study of High Level Computer Architectures in
the 1970-1980 decades [4].

Different functional languages have been applied to
hardware description tasks, such as Lava [5], Shard [6] or
BlueSpec [7], but the majority of work that tries to apply
high-level languages to hardware description uses impera-
tive (and object-oriented) languages or derivatives such as
C, C++, and Java.

The “absence of state” in functional languages [8], is
usually a shock for programmers fluent only in imperative
programming languages. However, in parallel architectures
the existence of state, means that the state must be shared
among different execution threads (or similar abstractions),
originating many difficult problems [9].

A very different parallel computing model is used on
the Erlang functional language [10] where a system is built
from independent processes, not sharing any state and com-
municating only by message passing. This has a strong re-
semblance to hardware design, where one can build a sys-
tem from different hardware blocks, without a global phys-
ical memory, using point to point connections, crossbars or
networks-on-chip for communication.

The heterogeneous architecture of an Erlang system
based has two interesting characteristics:

• It has a strong similarity to hardware.

• It has no strong coupling between the different pro-
cesses.

This might mean that a Erlang based system, could
be mapped entirely into heterogeneous hardware computa-
tional blocks. That would be very interesting. However, a
more achievable task is the mapping into hardware of only
some of those processes, selected considering the require-
ments of the full system.

As the coupling between the different processes is done
by the messages, as long as the same messages arrive in the
same format, with the same data, and a “process” does the
same work, the “process” can be “migrated” from software
to hardware without changes on the rest of the system.

In this paper some different implementation alternatives
for those computational blocks, are presented together with
a set of tools that facilitate their creation, use and test. This
will allow the design space exploration of FPGA imple-
mented coprocessors for Erlang based embedded systems.

2. The general template

The translation into a state machine template of a gen-
eral function expressed in a declarative form (usually tail
recursive) is described in [11]. In the remainder of this ar-
ticle the Erlang language is used for the source code exam-
ples. On listing 1 there is a small Erlang code fragment that
implements the greatest common divider algorithm, with
line numbers added for reference purposes.

1: gcd(A, B) when A<B -> gcd(B, A);
2: gcd(A, 0) -> A;
3: gcd(A, B) -> gcd(A-B, B).

Listing 1 – A sample Erlang greatest common divider
(GCD) function

An Erlang function is composed by a series of clauses
(lines of code) and each clause has:

• A condition, that may be explicit or implicit.

• An action, that specifies the steps to be executed if the
associated condition is true.

The conditions are tested sequentially, and the first one
found to be true triggers the execution of the associated
action. Translated into common english, the above code
fragment can be written as:
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1. If the first argument of the function (A) is smaller than
the second (B), swap them and call again the same
function.

2. If the second argument (B) is zero, then the result of
the function is the first argument (A) and the function
execution ends here.

3. Call again the function but replacing the first argu-
ment (A) with the difference between both arguments
(A-B).

On the first clause, there is an explicit condition (A<B).
On the second clause the condition is implicit (B==0), and
on the last clause one can assume also the presence of an
implicit (true) condition.

As an example the execution of the function call
gcd(15,25) can be traced as done in table 1.

Table 1. Tracing the execution of gcd(15,25)

Call Clause Matches Result
gcd(15,25) 1 Yes gcd(25,15)
gcd(25,15) 1 No See next clause
gcd(25,15) 2 No See next clause
gcd(25,15) 3 Yes gcd(25-15,15)
gcd(10,15) 1 Yes gcd(15,10)
gcd(15,10) 1 No See next clause
gcd(15,10) 2 No See next clause
gcd(15,10) 3 Yes gcd(15-10,10)
gcd(5,10) 1 Yes gcd(10,5)
gcd(10,5) 1 No See next clause
gcd(10,5) 2 No See next clause
gcd(10,5) 3 Yes gcd(10-5,5)
gcd(5,5) 1 No See next clause
gcd(5,5) 2 No See next clause
gcd(5,5) 3 Yes gcd(5-5,5)
gcd(0,5) 1 Yes gcd(5,0)
gcd(5,0) 1 No See next clause
gcd(5,0) 2 Yes Result: 5

The corresponding flowchart that triggers each action,
when a condition is true, is shown in Figure 1.

Initialization

Action 1

Action 2

Action n

Condition 1

.......

Condition 2

Condition n

.......

True

True

True

False

False

Figure 1. General execution flowchart

The absence of state in a functional language means that
a variable does not change it’s value after being assigned.
That is the origin of the “single assignment” designation of
those languages. So, if a variable does not change it’s value
and all the variables used in the conditions are known when
a function is called, on figure 1 all the conditions can be
tested in parallel (for speed) providing only the action cor-
responding the first condition found to be true is executed.

3. The template implementation

3.1. Tools used

For testing the different alternatives of implementa-
tion there was the need of generating the required Verilog
source code, in an automatic manner. To create automati-
cally Verilog (or VHDL) code, when the language’s prepro-
cessor and/or the generate statement is not enough, many
authors propose (and use) many different alternatives.

One of the common alternatives is to write a custom pro-
gram in a compiled language (such as C or C++) to write
the required HDL files [12] [13]. Other options involve the
use of interpreted languages [14] [15], chosen by their in-
teractivity.

The pre-processor used was chosen, taking into account
the following requirements:

• The pre-processor should not be Verilog specific

• The language used when programming the pre-
processor should also be useful for other common
FPGA design tasks

When all the previous requirements were taken into ac-
count, the G2 preprocessor [16] was chosen. It is a small
open source tool that supports mixing TCL with the de-
sired target language. TCL is an Open Source language
[17], built in a wide range of EDA tools and is useful for
many other tasks, from creating FPGA synthesis projects
to controlling digital simulations.

It supports controlling the source code generation with
the TCL decision constructs, and the use inside Verilog of
TCL variables.

At the time of writing, the computational template au-
tomatically generates the desired Verilog code for the the
full implementation of the required Verilog modules from
a very simple TCL specification, giving alternatives for the
parallel or sequential evaluation of the conditions.

As an example the required text for the Erlang GCD
example (Listing 1) is shown on listing 2, with the corre-
sponding Erlang code in comments (the lines starting with
#).
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set INPUT_BITS 64
set OUTPUT_BITS 32

set bits(OPR_A) 32
set bits(OPR_B) 32

set OUTPUT_SOURCE "OPR_A"

set INIT_STATEMENT "OPR_A<=din\[63:32\];
OPR_B<=din\[31:0\];"

# 1: gcd(A, B) when A<B -> gcd(B, A);
set condition(0) "(OPR_A<OPR_B)"
set action(0) "OPR_A<=OPR_B;

OPR_B<=OPR_A;"

# 2: gcd(A, 0)->A; % see OUTPUT_SOURCE
set condition(1) "OPR_B==0"
set action(1) $END_OF_CALC

# 3: gcd(A, B)->gcd(A-B, B).
set condition(2) "1"
set action(2) "OPR_A<= OPR_A-OPR_B;"

Listing 2 – GCD circuit specification

3.2. Circuit Architecture

The general block architecture of the circuit can be
found on figure 2. The next values of the data register are
determined by the conditions that trigger one of the actions.

Conditions

Actions

Arg1 Data register

Figure 2. General Hardware Template

The evaluation of the conditions can be done sequen-
tially, evaluating one condition at a time. If a condition is
found to be true, the corresponding action is triggered, and
after the execution of the action, the evaluation of the con-
ditions starts again on the first condition. This also means
that when a condition is found to be true, the following con-
ditions are not tested, even if they are also true. The order
of the conditions is used to specify their relative priority.

Other alternative is the evaluation in parallel of all
the conditions, with the highest priority condition having
precedence over the others. As the conditions are all eval-
uated in parallel, the respective circuit incorporates a prior-
ity encoder, triggering only the action corresponding to the
highest priority.

The block corresponding to the actions can be built from
independent blocks, one for each action, or could be imple-
mented in a single (ALU-like) module for resource sharing.

From a circuit specification such as the one shown on
Listing 2, and defining the desired type of condition eval-
uation (sequential/parallel) giving the variable PARALLEL
the value 0 or 1, the tool generates the complete Verilog
code of a module to implement the desired function, using
a Finite State Machine (FSM) based template.

The generated Verilog module has the following charac-
teristics:

• Input and output ports with handshake signals

• Sizing of the data registers

• Sizing of the FSM control registers on the sequential
implementation

• Sizing of the condition checking signals on the paral-
lel implementation

• Construction of the FSM logic on both implementa-
tions

• Hierarchical connection of similar modules

As Erlang has no notion of variable size (integers grow
in size automatically), the size of the variables is (for now)
defined only in the specification file, but in the future could
be extracted from special pragmas, placed in the Erlang
source code.

The implemented registers that do not depend on the
data variables, such as those needed for the FSM control,
are automatically sized according to the number of states
needed.

The input and output handshake signals (two on the
input: start and busy; and two on the output:
start out and busy in ) are handled by the implicit
FSM control of each module, without user intervention.
Besides the obvious inclusion of the created modules on
other circuits, they allow the cascading of different circuits,
in order to obtain the composition of different computa-
tional functions.

A more interesting feature is the automatic instantiation
of a different computational block in an action of a clause.
Supposing the required action is too complex to be exe-
cuted by combinatorial logic in a single clock cycle, having
a block that implements the required function, that block
can be included and interconnected specifying it as in list-
ing 3.

set module(1) "div"
set aux_input_bits(1) 64
set aux_output_bits(1) 32

set din_aux_source(1) "
{(‘OPR_D*(‘OPR_A-‘OPR_C+1’b1)),‘OPR_C}"

set dout_aux_source(1) "‘OPR_A<= ‘OPR_A;
‘OPR_B<= ‘OPR_B;
‘OPR_C<= ‘OPR_C+1;
‘OPR_D<=dout_aux_1;"

Listing 3 – Sub-Module Specification Example

ISBN: 978-972-8822-27-9 REC 2013 61



The different lines specify, the name of the existing
module, the desired bit widths for input and output, the data
placed on the input of the auxiliary module, and what to do
when the auxiliary module has the output ready.

Only the total data input size is specified, because the
size of each variable can be defined as a function of the
input size, simplifying the module’s connection. All the
handshake lines are connected to adequate control logic on
the main module.

// ## data register
reg [63:0] datareg;
//### extract operands:
‘define OPR_A datareg[31:0]
‘define OPR_B datareg[63:32]
...
always @(posedge clock)
begin
if ( reset )
begin

state_calc <= WAIT_DATA;
end_calc <= 1’b1;

end
else
begin

case( state_calc )
WAIT_DATA:

if ( start_calc )
begin

// initialization of the variables
state_calc <= CALC;
end_calc <= 1’b0;
‘OPR_A<=din[63:32];
‘OPR_B<=din[31:0];

end
CALC:

// calculation
...

endcase
end
...

Listing 4 – Excerpts of the generated Verilog code

...
wire [2:0] cond;
assign cond[0] = (‘OPR_A<‘OPR_B) ;
assign cond[1] = ‘OPR_B==0 ;
assign cond[2] = 1 ;
...
CALC:

casex ( cond ) // calculation
3’bxx1:
begin

‘OPR_A<=‘OPR_B;
‘OPR_B<=‘OPR_A;

end
3’bx1x:
begin

end_calc <= 1’b1;
state_calc <= 0;

end
3’b1xx:
begin

‘OPR_A<= ‘OPR_A-‘OPR_B;
end

endcase // casex
...

Listing 5 – Excerpts of the generated Verilog code
(parallel version)

On Listing 4 there are some excerpts of the generated
Verilog code common to both versions, where one can see

the definitions of the data register, of the individual vari-
ables (as segments of the data register) and also the simple
FSM that controls the calculations.

On the parallel condition test version of the architec-
ture, the individual conditions are packed into a vector, and
a casex statement is used to create a priority encoder, cor-
responding to the calculation, as can be seen on Listing 5.

...
CALC:
case ( present_cond ) // calculation

0: begin
if ( (‘OPR_A<‘OPR_B) )

begin
‘OPR_A<=‘OPR_B;

‘OPR_B<=‘OPR_A;
present_cond<=0;
end

else
present_cond<=present_cond+1;
end
1: begin

if ( ‘OPR_B==0 )
begin

end_calc <= 1’b1;
state_calc <= 0;

present_cond<=0;
end

else
present_cond<=present_cond+1;
end

2: begin
if ( 1 )
begin

‘OPR_A<= ‘OPR_A-‘OPR_B;
present_cond<=0;

end
else

present_cond<=present_cond+1;
end

default: present_cond<=0;
endcase
...

Listing 6 – Excerpts of the generated Verilog code
(sequential version)

The sequential test of the conditions uses an additional
register (present cond) to track the condition being
tested and tests one condition per state as can be seen on
Listing 6.

4. Results

As a test suite, several simple algorithms (taken from
[18]) were coded, simulated with Icarus Verilog, and syn-
thesized with ISE 12.4 from Xilinx, having as target a Spar-
tan 3E FPGA. The results appear on table 2. An interesting
result is that for simple algorithms, the parallel evaluation
of the conditions, besides being faster, uses less resources.
This happens because when evaluating the clauses sequen-
tially, some resources are needed to track the current con-
dition being tested.

On this type of computational architectures, the highest
performance (lower execution time) version is also the ver-
sion that uses the minimum of resources, maximizing two
of the most pressing constraints for an hardware designer.
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The execution times are given for a system with a Mi-
croblaze processor at a clock frequency of 50 Mhz, on a
Spartan 3E FPGA. They represent in order, the time needed
for the implemented hardware core to calculate the desired
results from the input data, the time needed for the run-
ning Erlang system to make the same task using the im-
plemented hardware, and the time needed using a software
approach coded entirely in Erlang.

Table 2. Data for sample modules

Times (µs):
Algorithm Vers. Slices HW HW+SW SW Only
Binomial Serial 325 22,08 772 68500
Binomial Parallel 321 8,56 758 68500
Collatz Serial 325 2,24 752 13000
Collatz Parallel 321 5,7 756 1300
Fibonacci Serial 110 1,68 752 2530
Fibonacci Parallel 103 0,86 751 2530
GCD Serial 166 0,44 751 1500
GCD Parallel 125 0,22 750 1500

An additional resource sharing alternative was tested,
coding in the same hardware module two different compu-
tational blocks, however no resources sharing or execution
time benefits were found.

5. Conclusions

There are two subjects of this paper: the tools used and
the proposed architecture. The tools used (templates built
using a TCL based preprocessor) allowed the prototyping
and the reutilization of templates for different computa-
tional tasks. The templates also support the automatic in-
stantiation of sub-modules, in the cases where an action is
too complex to be executed in a single clock cycle. The
transparency of the preprocessor (the user has full control
over all the code expansion phases) also means that any
bugs were easily located and corrected.

The preprocessor was also used for the creation of the
testbenches, and the TCL know-how gained was applied in
the automatization of common Xilinx synthesis workflows.

The flexible design architecture of the computational
blocks allows:

1. An architecture suitable for the future automatic trans-
lation from Erlang into hardware.

2. The use of different design alternatives for different
sub-blocks.

In the future, the used templates will be integrated in a
framework for automatically exploring design alternatives,
reusing some of this work, providing hardware acceleration
on embedded Erlang based systems, with demonstrated ad-
vantages.
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Erlang inspired hardware. In FPL 2010 - International Con-
ference on Programmable Logic and Applications, pages
244–246, Milano, 2010. IEEE.

[12] David B. Thomas and Wayne Luk. FPGA-Optimised uni-
form random number generators using LUTs and shift reg-
isters. In Proceedings of the 2010 International Conference
on Field Programmable Logic and Applications, FPL ’10,
pages 77–82, Washington, DC, USA, 2010. IEEE Computer
Society.

[13] Wei Zhang, Vaughn Betz, and Jonathan Rose. Portable and
scalable FPGA-based acceleration of a direct linear system
solver. ACM Trans. Reconfigurable Technol. Syst., 5(1):6:1–
6:26, March 2012.

[14] Gary Spivey. EP3: An extensible Perl preprocessor. In Inter-
national Verilog HDL Conference and VHDL International
Users Forum, 1998. IVC/VIUF 1998. Proceedings., pages
106–113, March 1998.

[15] Adrian Lewis. Prepro: Embedded Perl/Python preproces-
sor. Corner Case Research, 2007.

[16] Koen Van Damme. The G2 Preprocessor, 2002.
[17] John K. Ousterhout. Tcl and the Tk toolkit. Addison Wesley,

Reading, Massachusetts, 1994.
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Abstract 

 
Transistor density has made possible the 

design of massively parallel architectures with 
hundreds of cores on a single chip. Designing 
efficient architectures with such high number of 
cores is a very challenging task. Simulation of 
many-core architectures can help designers to 
explore the design space.  

This paper addresses the applicability of 
SystemC to simulate many-core architectures. 
We demonstrate the use of SystemC to model a 
system of P processors executing matrix 
multiplications. The simulation of the model 
allows analyzing the results regarding the 
number of transfers and the number of clock 
cycles required to complete each transaction. 
 
1. Introduction 
 

During the last decade massively parallel 
systems have been proposed as high-
performance computing architectures delivering 
very high computing speeds which make them 
particularly attractive for scientific applications. 

Whether in Application Specific Integrated 
Circuits (ASIC) or Field Programmable Gate 
Array (FPGA), these are very complex systems 
whose simulations must be done at system level 
since Register-Transfer Level (RTL) 
simulations are two or three orders of magnitude 
slower. Even so, only a few existing simulators 
are able to sustain many-core architectures with 
acceptable simulation times. The COTSon team 
at HP labs proposed a trace-driven simulator fed 
with thread instruction streams computed by a 
single-core full system simulator [1]. The 
approach only considers an idealized 
architecture with a perfect memory hierarchy, 
without any interconnect, caches or distribution 
of memory banks.  

Most of the other recent approaches 
parallelized discrete-event simulators with 
varying levels of detail. SlackSim [2] is a cycle-
level simulator allowing individual cores to 
progress at different paces in a controlled 
manner. In [3], the authors proposed a system 
level architectural modeling methodology for 
large designs based on SystemC. The proposed 
methodology uses normal function calls and 

SystemC method processes to implement a very 
fast but accurate model to evaluate a large 
design at system level. The platform was used to 
model a NoC-based SoC. The experimental 
results show improvement up to 98% in 
elaboration time and up to 90% in simulation 
time for small size NoCs. 

SystemC is a system design language that 
has evolved in response to a pervasive need for 
improving the overall productivity for designers 
of electronic systems [4]. 

One of the primary goals of SystemC is to 
enable system-level modeling – that is, 
modeling of systems above RTL, including 
systems that might be implemented in software, 
hardware, or some combination of the two [5]. 

The higher level of abstraction gives the 
design team a fundamental understanding, early 
in the design process, of the behavior of the 
entire system and enables better system 
tradeoffs, better and earlier verification, and 
overall productivity gains through reuse of early 
system models as executable specifications [4]. 

SystemC is based on the C++ programming 
language, which is an extensible object oriented 
modeling language. It extends the C++ data 
types with additional types useful for modeling 
hardware that support all the common 
operations and provide special methods to 
access bits and bit ranges.  

SystemC adds a class library to C++ to 
extend its capabilities, effectively adding 
important concepts such as concurrency, timed 
events and data types. This class library is not a 
modification of C++, but a library of functions, 
data types and other language constructs that are 
legal C++ code [6]. 

This work presents a SystemC design 
specification and model implementation of a 
2D-array multiprocessor system executing 
matrix multiplications using P processors. 

The rest of the paper is organized as follows. 
The next section describes an overview of 
SystemC. Section 3 describes the parallel dense 
matrix multiplication algorithm proposed. 
Section 4 describes the system-level model of 
the architecture. Experimental results are 
discussed in Section 5. Finally, Section 6 
concludes the paper. 
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2. Overview of SystemC 
 

Modules are the basic building blocks for 
partitioning a design in SystemC. They allow 
designers to break complex systems into 
smaller, more manageable pieces, and to hide 
internal data representation and algorithms from 
other modules [5]. 

 

 
 

Fig. 1. Module structure. 
 
A typical module contains processes that 

describe the functionality of the module, ports 
through which the module communicates with 
the environment, internal data and channels for 
maintenance of model state and communication 
among the module´s processes, among other 
modules (figure 1 sketches a module structure). 

A SystemC module is simply a C++ class 
definition and is described with the 
SC_MODULE macro (figure 2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Within the class definition, ports are usually 

the first thing declared because they represent 

the interface to the module. Local channels and 
sub-module instances come after that. 

Next, we place the class constructor. Each 
module requires a constructor block 
(SC_CTOR), which maps designated member 
functions to processes and declares event 
sensitivities; its argument must be the name of 
the module being declared. The header file 
finishes out with the declarations of processes, 
helper functions and other private data. 

In the example of figure 2, the definitions of 
the process reside in a separate file from the 
module declaration. The traditional template 
places all the instance creation and constructor 
definitions in header (.h) files. Implementation 
of processes and helper functions are deferred to 
the compiled (.cpp) file. 

In SystemC the basic unit of functionality is 
called a process. A process must be contained in 
a module – it is defined as a member function of 
the module and declared to be a SystemC 
process in the module´s constructor [5]. The 
processes within a module are concurrent. 

An event is an object, represented by class 
sc_event, that determines whether and when a 
process´s execution should be triggered or 
resumed; it has no value and no duration. An 
event is used to represent a condition that may 
occur during the course of simulation and to 
control the triggering of processes accordingly 
[5]. We can perform only two actions with a 
sc_event: wait for it or cause it to occur. 

The owner of the event is responsible for 
reporting the change to the event object. The act 
of reporting the change to the event is called 
notification. The event object, in turn, is 
responsible for keeping a list of processes that 
are sensitive to it. Thus, when notified, the event 
object will inform the scheduler of which 
processes to trigger [5]. 

SystemC has two kinds of processes: method 
processes, defined with the macro 
SC_METHOD, and thread processes, defined 
with the macro SC_THREAD. 

SC_THREAD processes are started once 
and only once by the simulator. Once a thread 
starts to execute, it is in complete control of the 
simulation until it chooses to return control to 
the simulator. Variables allocated in 
SC_THREAD processes are persistent. 

SystemC offers two ways to pass control 
back to the simulator. One way is to simply exit 
(e.g., return), which has the effect of terminating 
the thread for the rest of the simulation. When 
an SC_THREAD process exits, it is gone 
forever, therefore SC_THREADs typically 
contain an infinite loop containing at least one 
wait. The other way to return control to the 
simulator is to invoke the module wait method. 

// File example.h // 
#include <iostream> 
#include <systemc.h> 
 
SC_MODULE (example) 
{ 
     sc_in <bool> clk; 
     sc_in <bool> port_in; 
     sc_out <bool> port_out; 
  
     SC_CTOR (example) { 
      SC_METHOD (example_method); 
      sensitive_pos << clk; 
     } 

 
     void example_method(); 
}; 
 
 
// File example.cpp // 
#include "example.h" 
 
void example:: example_method (){ 
     port_out=port_in; 
} 

Fig. 2. Code example. 
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The wait (dynamic sensitivity list) suspends the 
SC_THREAD process [4]. 

When wait executes, the state of the current 
thread is saved, the simulation kernel is put in 
control and proceeds to activate another ready 
process. When the suspended process is 
reactivated, the scheduler restores the calling 
context of the original thread, and the process 
resumes execution at the statement after the wait 
[4]. 

During simulation a thread process may 
suspend itself and designate a specific event 
event_name as the current event on which the 
process wishes to wait. Then, only the 
notification of event_name will cause the thread 
process to be resumed. 

SC_METHOD processes never suspend 
internally. Instead, SC_METHOD processes run 
completely and return. The simulation engine 
calls them repeatedly based on the dynamic or 
static sensitivity list. 

In terms of dynamic sensitivity list, 
SC_METHOD processes may not call the wait 
method, because they are prohibited from 
suspending internally. Instead of calling wait(), 
a method process calls next_trigger() to specify 
the event that must occur for it to be triggered 
next time. 

Until the event occurs, the static sensitivity 
list is temporarily disabled. Unlike wait(), 
however, calling next_trigger() does not 
suspend the current method process. Instead, 
execution of the method process continues to 
the end, and next time the method process will 
be invoked only when the event specified by 
next_triggered() occurs [5] 

SystemC provides another type of sensitivity 
for processes called static sensitivity. Static 
sensitivity establishes the parameters for 
resuming before simulation begins. 

Like method processes, a thread process 
may have a sensitivity list describing the set of 
events to which it should normally react. As 
mentioned, when we encounter a wait() 
statement, the execution of a thread process is 
suspended. When any of the events in the 
sensitivity list occurs, the scheduler will resume 
the execution of the process from the point of 
suspension [5]. 

Interfaces, ports and channels are the way 
through which SystemC implements 
synchronization and communication at system 
level. 

A SystemC interface is an abstract class that 
inherits from sc_interface and provides only 
pure virtual declarations of methods referenced 
by SystemC channels and ports. No 

implementations or data are provided in a 
systemC interface. 

A SystemC channel is a class that 
implements one or more SystemC interface 
classes and inherits from either sc_channel or 
sc_prim_channel. SystemC has two types of 
channels: primitive and hierarchical. 

SystemC´s primitive channels are known as 
primitive because they contain no hierarchy, no 
processes, and are designed to be very fast due 
to their simplicity. All primitive channels inherit 
from the base class sc_prim_channel [4]. The 
simplest channels are sc_signal, sc_mutex, 
sc_semaphore, and sc_fifo.  

In this work will use sc_fifo channels to 
model the communication between processors 
and memories. sc_fifo is probably the most 
popular channel for modeling at the 
architectural level. First-in first-out queues are a 
common data structure used to manage data 
flow; by default, an sc_fifo<> has a depth of 16. 
The data type of the elements also needs to be 
specified. An sc_fifo may contain any data type 
including large and complex structures.  

Two interfaces, sc_fifo_in_if<>, and 
sc_fifo_out_if<>, are provided for sc_fifo<>. 
Together these interfaces provide all of the 
methods implemented by sc_fifo<>. 

A SystemC port is a class template with and 
inheriting from a SystemC interface. The port 
base class is called sc_port. A port is an object 
through which a module, and hence its 
processes, can access a channel´s interface. A 
channel cannot be connected to a port if it 
doesn´t implement the port´s interface. There 
are three types of ports: in, out or inout. Each 
port has a data type, passed on between the 
angle brackets (<>, template class). 

At last, the SystemC library provides its own 
definition of main(), which in turns calls 
sc_main. Within sc_main(), code executes in 
three distinct major phases, which are 
elaboration, simulation, and post-processing. 

Elaboration establishes hierarchy and 
initializes the data structures. Elaboration 
consists of creating instances of clocks, design 
modules, and channels that interconnect 
designs. At the end of elaboration, sc_start() 
invokes the simulation phase. During 
simulation, code representing the behavior of 
the model executes. 

Finally, after returning from sc_start(), the 
post-processing phase begins. Post-processing is 
mostly optional. During post-processing, code 
may read data created during simulation and 
format reports or otherwise handle the results of 
simulation. Post-processing finishes with the 
return of an exit status from sc_main() [4].
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Fig. 3. High-performance many-core architecture. 
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3. Matrix Multiplication Algorithm 
 

In this section, we present the algorithm 
proposed to parallelize the matrix multiplication 
problem for a system with p processors 
organized as a 2-dimensional array. 

The parallel architecture is organized as a 
2D mesh of execution (see figure 3). Each core 
unit consists mainly of a floating-point multiply 
and accumulate unit (FPMAC) and a dual-port 
memory. Access to the external memory is 
controlled with a direct memory access (DMA) 
module that can deliver burst transactions with 
one transfer per cycle. 

To facilitate the presentation of the 
algorithm, we consider that the mesh array is 
square and define matrix C to be the result of 
the product between two square matrices, A and 
B. The results can be easily generalized to non-
square meshes. We also consider that all 
matrices involved are square and have the same 
size n×n, and that its dimensions are multiple of 
the partitioned blocks dimensions. Again, this 
consideration does not limit in any way the 
generality of the results. 

Each of the ! = " × " processors, where " = $!, is responsible for calculating one block 
of matrix C with size %& × %&. Each one of these 
blocks is partitioned, according to the memory 
limitations of the processor, in sub blocks Cij 
with size ' × (. 

To generate a Cij block, the processor must 
multiply a ' × ) block of matrix A with a ) × ( 
block of matrix B. This multiplication is 
segmented as a sequence of *+ = %, block 
multiplications as specified in equation (1). 

 

                     !
#

"#
0

1

k

k
kjikij BAC                      (1) 

 
Therefore, each partial block multiplication 

consists of the multiplication of a ' × - sub 
block Aik with a - × ( sub block Bkj resulting in 
a partial sub block Cij of size ' × (. The final Cij 
result is obtained after accumulating the k0 
partial block multiplications. 

Figure 4 illustrates how the system performs 
the product between the matrices A and B 
considering four processors and 16 sub-blocks 
(4 per processor). 

The processor P1 is responsible for 
calculating blocks C11, C12, C21 and C22, 
processor P2 for blocks C13, C14, C23 and C24, 
processor P3 for calculating blocks C31, C32, C41 
and C42, and processor P4 for blocks C33, C34, 
C43 and C44. The order in which the blocks of 
matrix C are calculated corresponds to the 
equations defined in figure 4 (for the first 
“iteration”).  

To calculate the four blocks, C11, C13, C31, 
C33, it is only necessary to transfer the data from 
two rows of blocks of A and two columns of 
blocks of B. In fact, all the processors in the 
same row require the same data from matrix A, 
while all the processors in the same column 
require the same data from matrix B. Therefore, 
each sub block fetched from memory is 
broadcast to a row (column) of  $!, processors.  

The total number of communications is 
given by equation (2). 
 

           
2

3 11
n

yxp

n
Ncomm $%%&

'
(()

*
$#                (2) 

 
The number of communications does not 

depend on the dimension z of the sub blocks 
from matrix A and matrix B, thus z can be 
simply made equal to 1 in order to minimize the 
local memory required. 

Fig. 4. Matrix Multiplication. 
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The partial block multiplication is 
implemented such that, each processor receives 
the sub block Aik with y elements and stores it. 
Then it receives the elements of the sub block 
Bkj which are multiplied the corresponding 
locally stored elements of Aik, resulting in a 
partial sub block Cij. This process repeats n 
times, after which the final sub block Cij is 
obtained.  

The total number of computation cycles, 
assuming a processor throughput of one 
accumulation/cycle, is given by 

 

p

n
Ncompcycles

3

#   (3) 

 
where n3 is the total number of multiply-add 
operations to be performed by the p processors. 

The minimal execution time is achieved 
when all the communications, except the initial 
and final overhead, can be totally overlapped 
with the computations, that is, when the number 
of communication cycles required is lower than 
the number of computation cycles, 

commcomp NN + . 
If there is full overlap, the total execution 

time is given by 
 
 

p

n
OvhdOvhd

p

n
N ENDINIexeccycles

33
,$$#  (4)

 
 
The initial overhead, OvhdINI, corresponds to 

the number of cycles it takes until all data 
becomes available for the last processor(s) to 
initiate the computations (that is, when the first 
element of the last required block of B arrives). 
The final overhead, OvhdEND, corresponds to the 
additional number of cycles needed to write 
back the very last blocks of C. 

These initial and final communication 
overheads are negligible (for large matrices) 
and, therefore, are not detailed herein. 
 
4. Architecture model in SystemC 
 

This section describes the implementation of 
the system model using SystemC. For ease of 
explanation, we describe the approach 
considering only four processors. 

The model consists of three modules, where 
modules Matrix and Result represent the DMA 
and module Processors represents the 2D-Array 
(figure 5). 

The communication between modules is 
performed by FIFOs of type sc_fifo. Each FIFO 
has only one direction, so it is necessary one 
FIFO to communicate with module Result and, 
for each processor, one FIFO to communicate 
with module Matrix. 

 
 

 
 
 
 
 
 

 
 
Module Matrix stores the values of the 

matrices A and B and consists of two thread 
processes (SC_THREAD) that are responsible 
for sending, in the correct order, the data to the 
processors through FIFOs (figure 6). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The first process is responsible for sending 

data from matrix A and the second for sending 
data from matrix B. The modules send the data 
words one at a time, starting by sending one 
block A followed by one block B and so on.  

The module Matrix stops and waits, 
whenever the module Processors wants to send 
data to module Result. The synchronization of 
the two processes is maintained by two events 
(sc_event) triggered by the respective threads. 

The module Processors consists of p thread 
processes (SC_THREAD), being p the number 
of processors (figure 7). Each thread process 
receives and stores the two blocks and performs 
the operations. The operations are initiated at 
the moment the first value of the second block is 
available. 

(…) 
SC_MODULE(matrix) { 

sc_fifo_out <int> out_matrix1; 
sc_fifo_out <int> out_matrix2; 
sc_fifo_out <int> out_matrix3; 
sc_fifo_out <int> out_matrix4; 

 
int*A, *B;  
sc_event  MA_event, MB_event; 
void matrixA_thread(); 
void matrixB_thread(); 

 
SC_CTOR(matrix) 
: out_matrix1("out_matrix1"), 
out_matrix2("out_matrix2"), 
out_matrix3("out_matrix3"), 
out_matrix4("out_matrix4") 
{ 

SC_THREAD(matrixA_thread); 
SC_THREAD(matrixB_thread); 
if ( (A = (int *) malloc((total*total) * sizeof(int))) 

== NULL ) {  
printf("Out of memory\n"); 

} 
if( (B = (int *) malloc((total*total)  * sizeof(int))) 

== NULL ) { 
printf("Out of memory\n"); 

} 
    } 
}; 

Fig. 6. File Matrix.h. 

Fig. 5. SystemC model of the many-core architecture. 
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The product between the two blocks 

corresponds to partial results of block C, which 
are stored in the processor. After obtaining the 
final results, they are sent to the Result module 
through a FIFO. The processors send the data to 
the FIFO one word at a time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Module Result consists of one thread process 

(SC_THREAD), which has the function to read 
the final results obtained by the processors 
(figure 8). 

 
5. Simulation and Results 

The presented model was implemented and 
simulated for matrices of different sizes and 
different blocks, considering four processors. 

Tables 1, 2 and 3 show the results obtained 
with regard to the number of data transfers, the 
total number of clock cycles and the execution 
time, considering z=1. 

Block 
A 

Block 
B Transfers Cycles Time 

(s) 
4x1 1x2 802.816 802.818 55 
4x1 1x4 540.672 540.678 45 
4x1 1x8 409.600 528.486 32 
4x1 1x16 344.064 528.582 32 
8x1 1x2 671.744 671.750 50 
8x1 1x4 409.600 528.490 31 
8x1 1x8 278.528 528.586 31 
8x1 1x16 212.992 528.778 28 
16x1 1x4 344.064 528.594 31 
16x1 1x8 212.992 528.786 28 
16x1 1x16 147.456 529.170 26 

 
Table  1. Matrix with size 128x128 and z=1. 

 
Block 

A 
Block 

B Transfers Cycles Time 
(min) 

4x1 1x2 6.356.992 6.356.994 9 
4x1 1x4 4.259.840 4.259.846 6 
4x1 1x8 3.211.264 4.210.790 4 

4x1 1x16 2.686.976 4.210.886 4 
8x1 1x2 5.308.416 5.308.422 7 
8x1 1x4 3.211.264 4.210.794 4 
8x1 1x8 2.162.688 4.210.890 4 

16x1 1x4 2.686.976 4.210.898 4 
16x1 1x8 1.638.400 4.211.090 4 

16x1 1x16 1.114.112 4.211.474 3 
 

Table  2. Matrix with size 256x256 and z=1. 
 

Block 
A 

Block 
B Transfers Cycles Time 

4x1 1x4 269.484. 
032 

269.484. 
038 Hours 

4x1 1x8 202.375. 
168 

268.697. 
702 Hours 

8x1 1x4 202.375. 
168 

268.697. 
706 Hours 

8x1 1x8 135.266. 
304 

268.697. 
802 Hours 

 
Table  3. Matrix with size 1024x1024 and z=1. 

 
The number of cycles is obtained by 

considering that one cycle is required to write to 
the FIFO and that the multiplication-addition 
unit has a throughput of one result per cycle. 
The clock cycles are described in the processes 
and expressed by the function wait(). 

Observing tables 1, 2 and 3, we can 
conclude that the number of transfers and the 
number of clock cycles are consistent with the 
equations (2) and (3), respectively, as the 
difference between the simulated values and the 
theoretical approximation is less than 1%. 

As expected, the number of transfer cycles 
required decreases with the size of the C blocks 

(…) 
SC_MODULE(Processors) { 
 
   sc_fifo_in <int> in_matrix1; 
   sc_fifo_in <int> in_matrix2; 
   sc_fifo_in <int> in_matrix3; 
   sc_fifo_in <int> in_matrix4; 
   sc_fifo_out <int> out_result; 
   (…) 
 
   void B1_thread(); 
   void B2_thread(); 
   void B3_thread(); 
   void B4_thread(); 
 
   SC_CTOR(Processors) 
   : in_matrix1("in_matrix1"),in_matrix2("in_matrix2"), 
   in_matrix3("in_matrix3"), in_matrix4("in_matrix4"), 
   out_resul("out_resul") 
   { 

SC_THREAD(B1_thread); 
 SC_THREAD(B2_thread); 
 SC_THREAD(B3_thread); 
 SC_THREAD(B4_thread); 

(…) 
    } 
}; 

Fig. 7. File Processor.h. 

(…) 
SC_MODULE(Result) { 
 

sc_fifo_in <int> in_result; 
 
void RES_thread(); 
 
SC_CTOR(Result) 
: in_result("R") 
{ 

 SC_THREAD(RES_thread); 
 } 

}; 

Fig. 8. File Result.h. 
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(x×y). The minimal number of cycles is 
achieved when all the communications, except 
the initial overhead, can be totally overlapped 
with the computations. These are shown as best 
results and marked in bold. 

The (to be selected) size of the C block 
should be sufficient for the computation cycles 
to dominate, that is, for the transfers to be able 
to fully overlap with the computations, but not 
larger. As long as there is full overlap, there is 
no need to further increase the size of the C 
blocks (and therefore the local memory of the 
processors). In fact and as shown, above the 
ideal values the total number of clock cycles 
slightly increases with x and y. This is because 
the initial and final overheads are proportional 
to the sizes of the matrix blocks.  

 
Block 

A 
Block 

B Transfers Cycles Time 
(s) 

4x2 2x4 540.672 540.682 48 
4x2 2x8 409.600 528.490 30 
4x2 2x16 344.064 528.586 32 
8x2 2x4 409.600 528.498 32 

16x2 2x4 344.064 528.610 30 
4x8 8x8 409.600 528.546 33 

4x16 16x8 409.600 528.673 34 
4x64 64x8 409.600 529.441 37 

 
Table  4. Matrix with size 128x128. 

 
Block 

A 
Block 

B Transfers Cycles Time 
(min) 

4x2 2x4 4.259.840 4.259.850 6 
4x2 2x8 3.211.264 4.210.794 4 
4x2 2x16 2.686.976 4.210.890 4 
8x2 2x4 3.211.264 4.210.802 4 

4x32 32x8 3.211.264 4.211.233 4 
4x64 64x8 3.211.264 4.211.745 4 
4x128 128x8 3.211.264 4.212.769 5 

 
Table  5. Matrix with size 256x256. 

 
 

Block 
A 

Block 
B Transfers Cycles Time 

(min) 

4x16 16x8 202.375. 
168 

268.69. 
889 Hours 

4x128 128x8 202.375. 
168 

268.69. 
681 Hours 

4x256 256x8 202.375. 
168 

268.70. 
729 Hours 

 
Table  6. Matrix with size 1024x1024. 

 
Tables 4, 5 and 6 show the results with 

regard to the number of data transfers and 
cycles and the execution time, considering 
different values of z. These results confirm the 
theoretical conclusion, and equation (2), that the 
number of transfers does not change when the 

value z is increased. Again and as expected, the 
number of clock cycles slightly increases with z, 
because the overheads depend on the size of the 
blocks used. 
 
6. Conclusions 
 

In this paper we have described an approach 
to simulate many-core architectures using 
SystemC. We started with a brief overview of 
the language, describing some of the important 
concepts needed to create a model of a system.  

A parallel matrix multiplication algorithm to 
execute on a 2-dimensional multiprocessor array 
was presented and analyzed theoretically. 

An architecture was developed and 
implemented in SystemC in order to model the 
multiprocessor system design.  

We simulated the model to evaluate number 
of transfers and number of clock cycles required 
for the complete algorithm execution. The 
simulated results fully confirmed the theoretical 
analysis (the differences are less than 1%).  

The proposed SystemC model is now being 
generalized to be able to simulate any number 
of processors, so that massively parallel 
architectures may be evaluated. 
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Resumo

A densidade de transı́stores tornou possı́vel o projecto
de arquitecturas massivamente paralelas com centenas de
processadores num único integrado. No entanto, o pro-
jecto de arquitecturas com um número tão elevado de pro-
cessadores com um eficiente rácio desempenho/área ou
desempenho/energia é um grande desafio. Neste artigo,
adoptámos uma abordagem diferente ao projecto de uma
arquitectura de muitos núcleos. Inicialmente, efectuamos
uma análise formal aos algoritmos considerando aspectos
arquitecturais, e só a seguir é tomada uma decisão relativa
à estrutura da arquitectura de muitos núcleos. O algoritmo
de multiplicação de matrizes densas é utilizado como ponto
de partida. No trabalho descrito, implementámos a arqui-
tectura resultante da análise do modelo teórico do algo-
ritmo de multiplicação de matrizes e simulámos o sistema
em SystemC para confirmar os resultados. Os resultados
indicam que a arquitectura de muitos núcleos/algoritmo
propostos para a multiplicação de matrizes conseguem um
desempenho de 527 GFLOP/s em precisão simples e 192
GFLOP/s com precisão dupla.

Palavras Chave—Multiplicação de Matrizes, Massi-
vamente Paralelo, Alto-desempenho, FPGA

1. Introdução

Durante a última década têm sido propostos diversos sis-
temas massivamente paralelos como arquitecturas de alto
desempenho com elevada capacidade de computação, o
que os torna particularmente atractivos para aplicações ci-
entı́ficas.

Como representantes de chips comerciais com grande
capacidade de processamento tem-se o IBM Cell com nove
elementos de processamento SIMD com capacidade para
executar operações de vı́rgula-flutuante de 32-bits a 3 GHz
[1], o processador 80-tile teraflops da Intel com capacidade
para operações de vı́rgula-flutuante de 32-bits organizado
como uma malha 2D operando a frequências até 5 GHz
[2], o processador de vı́rgula-flutuante CSX700 [3] que se
destina a computações cientı́ficas e incorpora estruturas di-
reccionadas à computação algébrica e as mais recentes ar-
quitecturas GPU (Graphical Processing Unit) de uso-geral
com um grande número de processadores SIMD num único
chip.

Os chips referidos atingem desempenhos de pico de
aproximadamente um TeraFlop para precisão simples. No
entanto, uma análise mais detalhada destes processadores
revela que, ao executarem algoritmos especı́ficos, o de-
sempenho sustentado está tipicamente longe do desempe-
nho de pico disponı́vel. Em particular, considerando a
multiplicação de matrizes densas, o processador Teraflop
atinge apenas cerca de 40% do seu desempenho de pico,
enquanto os GPGPUs atingem cerca de 60%. Já o acelera-
dor CSX700 atinge um melhor desempenho, (quase) 80%
do seu desempenho de pico, o qual foi especificamente pro-
jectado para operações de computação cientı́fica. Final-
mente, o IBM Cell atinge quase o seu desempenho de pico.

Outras aplicações revelam piores resultados no que diz
respeito ao desempenho. Por exemplo, o Teraflop apenas
atinge uns escassos 2,73% de desempenho de pico quando
executa a FFT 2D. Se analisarmos o rácio desempenho/área
surgem ineficiências relativas piores. O processador 80-
tile chega até aos 2.6 GFLOPs/mm2, um GPU atinge 0.9
GFLOPs/mm2, o CSX700 atinge apenas 0.2 GFLOPs/mm2,
e o processador IBM cell atinge os 2 GFLOPs/mm2. Es-
tas medidas de desempenho/área têm influência directa no
custo e no consumo de energia do chip do processador.

Em vez de propor outra arquitectura de muitos núcleos
e aplicar um conjunto especı́fico de algoritmos para deter-
minar o seu desempenho, a nossa abordagem consiste em
efectuar uma análise formal dos algoritmos considerando
os aspectos arquitecturais, como o número de processado-
res, a memória local disponı́vel para cada processador, e a
largura de banda entre o processador e a memória externa, e
só depois decidir a estrutura da arquitectura do processador
de muitos núcleos.

Neste trabalho seguiu-se essa abordagem para pro-
jectar um sistema de processamento massivamente para-
lelo para computação cientı́fica, cujo projecto é orien-
tado pelos próprios algoritmos, em particular por uma
multiplicação de matrizes (GEneral Matrix-matrix Multi-
plication - GEMM) [4]. Começou-se por analisar o algo-
ritmo e em seguida usou-se os resultados dessa análise para
orientar o projecto do processador de muitos núcleos. Um
modelo ao nı́vel do sistema da arquitectura foi implemen-
tado e simulado em SystemC [5] para confirmar os resulta-
dos teóricos obtidos.

O uso do SystemC facilitou a modelação ao nı́vel do
sistema da arquitectura hardware-software e permitiu ob-
ter resultados precisos em termos do número de ciclos de
execução que confirmaram a análise teórica do algoritmo.
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O artigo encontra-se organizado da seguinte forma.
Na secção 2 são descritos outros trabalhos envolvendo a
multiplicação de matrizes densas. Na secção 3 é descrito o
algoritmo paralelo de multiplicação de matrizes. A secção
4 descreve o processador massivamente paralelo de alto-
desempenho proposto. A secção 5 relata os resultados res-
peitantes à simulação e implementação. Por fim, o artigo é
concluı́do na secção 6.

2. Estado de Arte

Existem diversos processadores comerciais de muitos
núcleos para computação de alto-desempenho, incluindo os
GPUs, o IBM Cell, o processador 80-tile teraflops da Intel
e o processador CSX700. Todos estes processadores foram
testados com a multiplicação de matrizes atingindo altos
desempenhos com diferentes eficiências em termos de de-
sempenho/área. Processadores de uso-geral foram também
sujeitos a um estudo intensivo relativamente a computações
matriciais de alto-desempenho [6]. No entanto, o overhead
resultante da descodificação de instruções, entre outras
complexidades, degrada o desempenho relativo da arqui-
tectura.

Em [7] é apresentada uma análise extensa à
multiplicação de matrizes. Os autores apresentam
um modelo teórico com o objectivo de estudar a GEMM
em várias arquitecturas. O modelo permite conhecer os
diferentes compromissos resultantes da personalização
dos parâmetros inerentes às arquitecturas, e indica como
atingir o máximo desempenho com a máxima eficiência em
termos de área e energia. Os autores propõem o seu próprio
processador baseado numa malha 2D com 16 núcleos de
processamento. Estes estimam que uma arquitectura de
240 núcleos consiga atingir 600 GFLOPS ao executar uma
aplicação GEMM de dupla precisão na tecnologia padrão
de 45nm, mostrando melhor desempenho e eficiência a
nı́vel de área e energia face a outros trabalhos (e.g. [2]).

Arquitecturas hardware dedicadas foram também ex-
ploradas nas FPGAs (Field Programmable Gate Arrays).
Em [8] os autores apresentam um projecto de um multi-
plicador de matrizes em hardware de vı́rgula-flutuante com
dupla precisão optimizado para implementação em FPGA.
Neste trabalho são propostos modelos teóricos para esti-
mar a dimensão dos sub blocos matriciais que minimize o
número de comunicações com a memória externa, e para
avaliar a largura de banda de pico necessária para atingir
o máximo desempenho dado o número de processadores e
a dimensão da memória local. Os resultados mostram que
um sistema com 39 elementos de processamento utilizando
um total de 1600 KB de memória interna e executando a
200 MHz (numa Virtex II Pro) consegue alcançar um de-
sempenho de 15.6 GFLOPS, dada uma largura de banda de
400 MB/s para acesso à memória externa.

Em [9] é proposta uma implementação de diversas
operações matriciais optimizada para FPGA. Os autores
apresentam uma análise teórica baseada em parâmetros de
projecto existentes. No trabalho, afirmam que com uni-
dades de vı́rgula-flutuante mais pequenas e mais rápidas
conseguem atingir 19.5 GFLOPS para a multiplicação de

matrizes.
Em [10], é proposto um modelo teórico para prever o de-

sempenho da multiplicação de matrizes esparsas e densas
em sistemas baseados em FPGAs. O modelo apresentado é
baseado na multiplicação de matrizes por blocos e conclui-
se que os blocos ideias são quadrados o que, segundo os
autores, é também verificado em trabalhos anteriores.

Tal como em alguns trabalhos referidos em FPGAs, o
trabalho que apresentamos propõe também um algoritmo e
uma análise teórica que guia e sustenta as opções de pro-
jecto de uma arquitectura de alto desempenho, detalhada
nas secções seguintes.

3. Algoritmo Paralelo de Multiplicação de
Matrizes Densas

Nesta secção, é proposto um novo algoritmo para para-
lelizar a multiplicação de matrizes dado um sistema com p
elementos de processamento (PEs) organizado como uma
matriz 2D. De forma a facilitar a exposição do algoritmo
consideramos que a malha 2D de processadores é quadrada.
Os resultados podem ser facilmente generalizados para ma-
lhas não quadradas.

A matriz C é definida como o resultado entre o pro-
duto de duas matrizes, A e B. O algoritmo proposto
está representado graficamente na figura 1. As matrizes
são também consideradas quadradas e apresentam as mes-
mas dimensões n × n, sendo que as suas dimensões são
múltiplas das dimensões dos sub-blocos. Note-se uma vez
mais que esta consideração não limita de qualquer forma a
generalidade dos resultados.

Como demonstrado, cada um dos p = q×q processado-
res, onde q =

√p, é responsável por calcular um bloco da
matriz C de dimensão n

q ×
n
q . Cada um destes blocos é por

sua vez repartido, de acordo com as limitações de memória
do processador, em sub blocos Ci j de dimensão y× x.

Para gerar um bloco Ci j, o processador deve multiplicar
um bloco y× n da matrix A por um bloco n× x da matriz
B. A multiplicação é implementada como uma sequência
de k0 =

n
z multiplicações parciais de blocos como

Ci j =
k0

∑
k=1

Aik ×Bk j (1)

Cada multiplicação parcial de blocos consiste na
multiplicação de um sub bloco Aik de dimensão y× z com
um sub bloco Bk j de dimensão z× x, resultando num sub
bloco parcial Ci jk de dimensão y× x. O resultado final Ci j
é obtido depois de acumular k0 resultados parciais.

As multiplicações parciais de blocos são implementadas
tal que, primeiro, cada processador recebe um sub-bloco
Aik e armazena-o. Em seguida, recebe os elementos do sub-
bloco Bk j que são imediatamente multiplicados pelos cor-
respondentes elementos de Aik armazenados localmente, de
forma a produzir os elementos resultantes do bloco parcial
Ci jk .

A memória local de cada PE deve conseguir armazenar
um bloco Aik e um bloco Ci j. Os elementos de Bk j são
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Figura 1. Algoritmo de multiplicação de matrizes por blocos.

processados assim que estão disponı́veis e portanto não ne-
cessitam de ser armazenados localmente no PE.

Olhando para a figura 1, reparamos que todos os pro-
cessadores na mesma linha requerem os mesmos dados da
matriz A, enquanto que todos os processadores na mesma
coluna requerem os mesmos dados da matriz B. Portanto,
cada sub-bloco transferido da memória é difundido por
uma linha (coluna) de √p processadores.

O número total de comunicações da/para a memória ex-
terna é dado por

Ncomm =
n3
√p

(
1
x
+

1
y

)
+n2 (2)

em que o primeiro termo corresponde à (repetida) leitura
de elementos de A e B e o segundo termo, n2, corresponde
a escrever de volta os elementos finais de C.

O número de comunicações não depende da dimensão z
dos sub blocos da matriz A e matriz B, portanto podemos
simplesmente igualar a 1 de forma a minimizar a memória
local necessária.

A memória necessária para armazenar um sub bloco Aik
(dimensão y×1) é duplicada para permitir que o processa-
dor armazene a próxima coluna necessária enquanto realiza
as computações.

Deste modo, a memória local necessária para cada PE é:

L = 2 y+ x y (3)

A partir das equações (2) e (3) determinámos as di-
mensões dos sub-blocos Ci j que minimizam o número de
comunicações, como função da memória local disponı́vel
L:

x =
√

L ; y =
L

2+
√

L
≈
√

L (4)

O número total de ciclos de computação, NPC, supondo
uma acumulação por ciclo, é dado por

NPC =
n3

p
(5)

O número total de ciclos de comunicação, NCC, dada
uma largura de banda de b palavras por ciclo, é

NCC =
Ncomm

b
≈ n3

√p

(
1
x
+

1
y

)
1
b

(6)

considerando que, para matrizes grandes, o termo n2 é des-
prezável (face a n3).

O tempo de execução mı́nimo é alcançado quando todas
as comunicações, excepto o overhead inicial, conseguem
ser totalmente sobrepostas às computações. A condição se-
guinte deve ser respeitada de forma a atingir a sobreposiçao
máxima:

NCC ≤ NPC (7)

n3
√p

(
1
x
+

1
y

)
1
b
≤ n3

p
(8)

(
1
x
+

1
y

)
≤ b

√p
(9)

Para blocos quadrados Ci j, tais que x = y =
√

L como
indicado na equação (4), a largura de banda mı́nima ne-
cessária para suportar um dado conjunto de p processado-
res, com uma memória local de L palavras cada, é dada por

bmin = 2
√

p
L

(10)

O tempo total de execução, texec, depende do factor li-
mitativo, computações ou comunicações, tendo em conta
as restrições do sistema (número de processadores, largura
de banda, tamanho da memória, frequência). Este pode ser
estimado por

texec ≈ max
[

n3

p
;

2 n3

b
√

pL

]
(11)

não considerando o (negligenciável para matrizes grandes)
custo inicial das comunicações.

4. Arquitectura Massivamente Paralela de
Alto-Desempenho

A arquitectura paralela é organizada como uma ma-
lha 2D de elementos de processamento (ver figura 2). A
execução dos processadores é ditada pelo fluxo de dados,
isto é, começam a executar assim que os dados de entrada
necessários estão disponı́veis.

Nesta versão da arquitectura paralela estamos a usar
núcleos de processamento homogéneos. Cada unidade
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Figura 2. Arquitectura massivamente paralela de alto-
desempenho.

de processamento consiste basicamente numa unidade de
vı́rgula-flutuante de multiplicação-soma (FMADD) e uma
memória de duplo porto. A cada ciclo de relógio, a
FMADD é capaz de fornecer um resultado multiplicação-
adição sustentado (2 FLOPs). O acesso à memória externa
é controlado por um módulo de acesso directo à memória
(DMA) que consegue providenciar transacções de rajada
com um ritmo igual a uma transferência por ciclo. A arqui-
tectura suporta difusão de dados na horizontal e na vertical.

Um modelo a nı́vel do sistema da arquitectura foi de-
senvolvido em SystemC para avaliar a implementação pro-
posta do algoritmo de multiplicação de matrizes. As
comunicações entre a memória e os elementos de proces-
samento são modeladas por FIFOs (do tipo sc fifo). O
módulo ProcessorArray consiste em p processos thread
(sc thread), um para cada. Cada processo thread recebe os
blocos matriciais e executa as operações. A multiplicação
de matrizes por blocos é iniciada no momento em que o
primeiro valor do bloco B é lido (ver secção 3). O pro-
duto entre dois blocos corresponde aos resultados parciais
do bloco C, os quais são armazenados na memória do pro-
cessador. Depois de obter os resultados finais, estes são en-
viados para a memória da matriz, também através de uma
FIFO.

Este modelo da arquitectura foi simulado para matrizes
de diferentes dimensões e sub-matrizes com blocos de di-
ferentes dimensões. Os resultados obtidos referentes ao
número de transferências de dados e ao número total de
ciclos de relógio foram comparados com a análise teórica
(resumida na secção 3) e confirmam em pleno a sua vali-
dade.

5. Resultados de Implementação

Um protótipo do núcleo de processamento foi projec-
tado e sintetizado para FPGAs da famı́lia Virtex-7. A
unidade de vı́rgula-flutuante de dupla precisão foi imple-
mentada com base nas bibliotecas da Xilinx. O módulo
FMADD foi implementado de modo a suportar uma
frequência de operação de 500 MHz para precisão sim-
ples e 400 MHz para precisão dupla. Assim, ao ritmo
de produção máximo, o módulo atinge um desempenho
de pico de 800 MFLOP/s (quando realiza as operações de
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multiplicação-soma) para precisão dupla e 1 GFLOP/s para
precisão simples. O bloco de DMA funciona a 200 MHz.
A tabela 1 apresenta os resultados de implementação do
núcleo.

Tabela 1. Resultados de implementação

Precisão Módulo LUTs DSP
Simples FMADD 750 5
Dupla FMADD 1700 14

Considerando esta implementação, determinou-se a
relação entre largura de banda com a memória externa,
memória local e desempenho para dois dispositivos da
famı́lia Virtex-7 considerando precisão simples (ver resul-
tados nas figuras 3, 4) e precisão dupla (ver figuras 5 e 6).

Considerando precisão simples, através dos gráficos ob-
servamos os pontos de desempenho máximo. As cur-
vas podem ser explicadas considerando a relação entre
computação e comunicação. Para uma determinada largura
de banda, o aumento da memória local reduz o número
de ciclos de comunicação, mas o número de processado-
res também reduz e consequentemente o número de ci-
clos de computação aumenta. Assim, para memórias lo-
cais mais pequenas, o tempo de execução é dominado pela
comunicação, enquanto que para memórias locais maio-
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res o tempo de execução é dominado pela computação.
Isto significa que existe um tempo de execução óptimo em
que a comunicação fica escondida pela computação que
corresponde ao ponto máximo que se pode visualizar nos
gráficos.

Se aumentarmos a largura de banda, o número de ci-
clos de comunicação decresce e em consequência o ponto
óptimo é atingido para uma memória local menor. Esta
alteração também aumenta o desempenho, uma vez que
o ponto óptimo tem um menor número de ciclos de
comunicação e de ciclos de computação (ver tabela 2).

Tabela 2. Resultados para precisão simples e matri-
zes de 1024×1024

XC7VX415T
BW Mem #cores Ciclos Exec(µs) GFLOPs

4B/ciclo 32 KB 247 4.351.287 21,71 99
8B/ciclo 32 KB 247 4.349.210 10,85 198

16B/ciclo 16 KB 343 3.131.300 6,55 328
XC7VX1140T

BW Mem #cores Ciclos Exec(µs) GFLOPs
4B/ciclo 32 KB 528 2.972.185 14,86 145
8B/ciclo 32 KB 528 2.036.609 7,43 289

16B/ciclo 32 KB 528 1.035.106 4,08 527

Na tabela observamos o aumento do desempenho com
o aumento da largura de banda. Note-se, no entanto, que o
aumento do número de núcleos e de ciclos não é proporci-
onal ao aumento da largura e ao aumento do desempenho.
O que se passa, é que o número de ciclos corresponde ao
máximo entre o número de ciclos de comunicação e o de
computação. Por exemplo, na segunda linha da tabela, o
número de ciclos é dominado pela computação, pelo que
o tempo de execução reduz para metade, comparado com
o caso da primeira linha (não esquecer que frequência de
computação é o dobro da de comunicação).

A análise relativa à arquitectura com núcleos de dupla
precisão é similar à realizada para precisão simples. Como
era de esperar existe uma redução do desempenho uma
vez que temos de comunicar com palavras de 64 bits e o
módulo de cálculo funciona a uma frequência menor (ver
tabela 3).
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Tabela 3. Resultados para precisão dupla e matrizes
de 1024×1024

XC7VX415T
BW Mem #cores Ciclos Exec(µs) GFLOPs

4B/ciclo 32 KB 123 8.732.578 30,74 70
8B/ciclo 16 KB 151 7.112.025 19,74 109

16B/ciclo 8 KB 151 7.111.283 17,78 121
XC7VX1140T

BW Mem #cores Ciclos Exec(µs) GFLOPs
4B/ciclo 64 KB 132 8.138.775 20,90 103
8B/ciclo 32 KB 240 4.475.972 11,20 192

16B/ciclo 8 KB 240 4.474.437 11,19 192

Comparámos a nossa arquitectura com o resultado de
[8], tendo em conta que a famı́lia de FPGA é diferente (Vir-
tex II Pro). Ajustámos a nossa arquitectura para as mesmas
frequências e largura de banda (ver tabela 4).

Tabela 4. Comparação com o estado da arte em
FPGA

Arquitectura PEs Freq. BW (MB/s) GFLOPS/s
VirtexIIP [8] 39 200 MHz 400 15,6

Nosso (Equiv.) 39 200 MHz 400 15,6
Nosso (415T) 89 200 MHz 400 35,1
Nosso (1140T) 130 200 MHz 400 51,4

No caso de um dispositivo de complexidade equivalente
ao de [8] (39 processadores e 1600 KB de memória in-
terna) verifica-se que as duas arquitecturas têm um desem-
penho equivalente. Verifica-se ainda que, para os dispo-
sitivos de nova geração, é possı́vel aumentar significativa-
mente o número de processadores e, consequentemente, o
desempenho.

6. Conclusões e Trabalho Futuro

O artigo descreve uma abordagem algorı́tmica no pro-
jecto de arquitecturas massivamente paralelas. Analisámos
os compromissos entre a largura de banda referente à
memória externa, dimensão de memória local e número
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de processadores da arquitectura. A abordagem foi testada
com o algoritmo de multiplicação de matrizes. Os resul-
tados indicam que um projecto optimizado da arquitectura
tem grandes benefı́cios de desempenho.

No futuro planeamos considerar mais algoritmos (level-
3 BLAS), assim como outras operações importantes para
computação cientı́fica (e.g., Fast Fourier Transform), de
forma a generalizar a arquitectura proposta e ver como esta
influencia o desempenho da arquitectura na execução da
multiplicação de matrizes e o quão eficiente pode ser o pro-
jecto da arquitectura de forma a suportar estes algoritmos e
operações.
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Abstract 
 

Several algorithms exist for biological 
sequence alignment. The Smith-Waterman (S-W) 
algorithm is an exact algorithm that uses dynamic 
programming for local sequence alignment. Some 
implementations in software for General Purpose 
Processors (GPP) as well in hardware (using Field 
Programmable Gate Array (FPGA)) exist. In this 
paper it is proposed an implementation of the S-W 
algorithm for DNA, RNA and amino acids sequence 
alignment that uses the Coreworks® processing 
engine. The processor FireWorksTM will be used to 
control a hardware accelerator named SideWorksTM 
both developed by Coreworks®. In this paper is 
proposed an architecture based on Process 
Elements (PE) to be implemented in SideWorksTM 
accelerator template with the purpose of 
accelerating the S-W algorithm. 
The developed application is able to read sequences 
from a file, align them with a library of sequences 
and present the results for the best local alignments 
using the Coreworks® processing engine. 
 

Keywords— DNA, Bioinformatics, Sequence 
Alignment, Smith-Waterman algorithm, Field 
Programmable Gate Array (FPGA), Cell Updates 
Per Second (CUPS), Platform Design, SideWorksTM, 
FireWorksTM 
 
1. Introduction 
 

Sequence alignment is one of the most widely 
used operations in computational biology. The need 
for speeding up this operation comes from the 
exponential growth of biological sequences 
databases. 

The sequence alignment operation consists of 
finding similarities between a certain test sequence 
and all the sequences of a database. This operation 
allows biologists to point out sequences sharing 
common subsequences. From a biological point of 
view, this operation leads to identifying similar 
functionality. 

The S-W algorithm is a well-known dynamic 
programming algorithm for performing local 
sequence alignment to determine similar regions 

between two DNA, RNA, proteins or amino acids 
sequences. 

There are two stages in the S-W algorithm. 
These are the similarity matrix (H matrix) fill and 
the trace back. In the first stage a matrix is filled 
with a similarity score for each element of the 
sequences. The second stage finds the maximum 
score of the matrix and performs the trace back to 
find the best local alignment. The first stage of the 
algorithm will consume the largest part of the total 
computation time. 

One approach used to get high quality results 
in a short processing time is to use parallel 
processing on a reconfigurable system (FPGA) to 
accelerate the H matrix fill stage of the S-W 
algorithm. The maximum score of the matrix is then 
transferred to a GPP and the trace back is performed 
to get the optimal alignment. 

 
2. Smith-Waterman algorithm 
 

The Smith-Waterman algorithm is an optimal 
local sequence alignment algorithm that uses 
dynamic programming. Several alignment models 
can be used by the S-W algorithm. A simple model 
of the algorithm is the Linear Gap Penalty (LGP) 
model. In this model there is a score penalty (α) for a 
gap in the alignment of the sequences, the value of 
the score penalty is linear and defined by the user of 
the algorithm.  

The algorithm uses a substitution matrix (Sbt 
matrix) that represents the similarity between 
elements. The matrix positions have a value of -1 if 
the elements are different and 2 if the elements are 
equal. 

Using two sequences of size N and M the H 
matrix can be computed using the following 
expression: 
 

! !! ! ! "!# !! ! ! !! ! ! !! !! ! ! ! ! !! ! ! !! ! ! ! ! !"# !!!! !!! !!!!!!!!!, (1) 

 
 
for  1 ≤ i ≤ N,  1 ≤ j ≤ M. 
 

H(i,0) = H(0,,j) = 0     for  0 ≤ i ≤ N,  0 ≤ j ≤ M, 
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where i and j represent the element position of the 
sequences under evaluation.  More information on 
S-W algorithm can be found in [1][2]. 

The regular computation requires an 
initialization of the first column and the first line 
filled with zero value, as presented in Fig. 1, where 
each cell is computed with equation (1). 
 

Sequence 1: ATGCTGAC 
Sequence 2: CGATCGAT 

 
  A T G C T G A C 
 0 0 0 0 0 0 0 0 0 

C 0 0 0 0 2 1 0 0 2 
G 0 0 0 2 1 1 3 2 1 
A 0 2 1 1 1 0 2 5 4 
T 0 1 4 3 2 3 2 4 4 
C 0 0 3 3 5 4 3 3 6 
G 0 0 2 5 4 4 6 5 5 
A 0 2 1 4 4 3 5 8 7 
T 0 1 4 3 3 6 5 7 7 

 
Fig. 1 – H matrix for sequence 1 and sequence 2. 

 
Since the biological sequences to be aligned 

may be too long to be processed in fully paralleled 
hardware the proposed architecture will be adapted 
to include the possibility to divide the computation 
of the H matrix. This division uses the initialization 
values of the matrix as is show on the following 
example. 

When splitting the computation of the matrix 
using, for example 4 partitions, the regular 
computation is repeated 4 times as presented in Fig. 
2. 
 

"# # $# %# &# !# # '# # %# &# $# !#
# (# (# (# (# (# # # (# (# (# (# (#
!# (# (# (# (# )# # !# )# "# (# (# )#
&# (# (# (# )# "# # &# "# "# '# )# "#
$# (# )# "# "# "# # $# "# (# )# *# +#
%# (# "# +# '# )# # %# )# '# )# +# +#
# # # # # # # # # # # # #
)# # $# %# &# !# # +# # %# &# $# !#
# (# "# +# '# )# # # )# '# )# +# +#
!# (# (# '# '# *# # !# *# +# '# '# ,#
&# (# (# )# *# +# # &# +# +# ,# *# *#
$# (# )# "# +# +# # $# +# '# *# -# .#
%# (# "# +# '# '# # %# '# ,# *# .# .#

 
Fig. 2 – Divided computation of H matrix for 

sequence 1 and sequence 2. 
 

Each computation inherits the line and column 
of previous computations as its own initialization 
line and column. Using this implementation is 
possible to obtain the exact same score result of H 
matrix. More information on H matrix partition 
computation can be found in [3]. 

For this application it will be used a simple 
trace back function [4]. This function finds the 
maximum score position in the H matrix and 
recalculates expression (1) for that position, this 
time evaluating from which cell the result derivate 
from. As show in expression (1), each cell result can 
only come from 3 cells, the up neighbor cell, the left 
neighbor cell or the up-left neighbor cell. With this 

information the traceback function will then move to 
the cell that generated the result and perform again 
the same operation. This will continue until the score 
from the cell that generated the result is zero. 

The example in Fig. 3 illustrates the trace back 
function working for sequence 1 and sequence 2. 

 
  A T G C T G A C 
 0 0 0 0 0 0 0 0 0 

C 0 0 0 0 2 1 0 0 2 
G 0 0 0 2 1 1 3 2 1 
A 0 2 1 1 1 0 2 5 4 
T 0 1 4 3 2 3 2 4 4 
C 0 0 3 3 5 4 3 3 6 
G 0 0 2 5 4 4 6 5 5 
A 0 2 1 4 4 3 5 8 7 
T 0 1 4 3 3 6 5 7 7 

 
Fig. 3 – Trace back for sequence 1 and sequence 2. 

 
From the trace back in Fig. 3 results that the 

best local alignment with a score of 8 is: 
 

ATGCTGA 
AT- C -GA 

  
To parallelize the H matrix fill in the S-W 

algorithm it is necessary to respect the data 
dependency. Through expression (1) is possible to 
realize that iteration (i,j) cannot be executed until 
iterations (i-1,j), (i,j-1) and (i-1,j-1) are executed 
first due to data dependencies. However if the 
elements are calculated on different time cycles it is 
possible to execute several calculus in the same time 
cycle as show in Fig. 4. 

 
  A T G C T G A C 
 0 0 0 0 0 0 0 0 0 

C 0 PE1,  
C1 

PE2,
C2 

PE3,
C3 

PE4,
C4 

PE5,
C5 

PE6,
C6 

PE7,
C7 

PE8,
C8 

G 0 PE1, 
C2 

PE2,
C3 

PE3,
C4 

PE4,
C5 

PE5,
C6 

PE6,
C7 

PE7,
C8 

PE8,
C9 

A 0 PE1, 
C3 

PE2,
C4 

PE3,
C5 

PE4,
C6 

PE5,
C7 

PE6,
C8 

PE7,
C9 

PE8, 
C10 

T 0 PE1, 
C4 

PE2,
C5 

PE3,
C6 

PE4,
C7 

PE5,
C8 

PE6,
C9 

PE7, 
C10 

PE8, 
C11 

C 0 PE1,
C5 

PE2,
C6 

PE3,
C7 

PE4,
C8 

PE5,
C9 

PE6, 
C10 

PE7, 
C11 

PE8, 
C12 

G 0 PE1,
C6 

PE2,
C7 

PE3,
C8 

PE4,
C9 

PE5, 
C10 

PE6, 
C11 

PE7, 
C12 

PE8, 
C13 

A 0 PE1,
C7 

PE2,
C8 

PE3,
C9 

PE4, 
C10 

PE5, 
C11 

PE6, 
C12 

PE7, 
C13 

PE8, 
C14 

T 0 PE1,
C8 

PE2,
C9 

PE3, 
C10 

PE4, 
C11 

PE5, 
C12 

PE6, 
C13 

PE7, 
C14 

PE8, 
C15 

 
Fig. 4 – H matrix example with indication on which 

PE and cycle the cell score is computed. 
 
As is shown in Fig. 4 it is possible that all 

elements in the anti-diagonal can be computed in the 
same cycle (e.g. cycle 8). This parallel execution is 
called dataflow implementation [2], as all the 
computations are executed when their data 
dependencies are available. 

This dataflow allows that the computation of 
the H matrix can be achieved using a chain of PEs. 
In each PE it will be computed a column of the H 
matrix and each cell computation will be streamed to 
the next PE. 
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3. Coreworks® Processing Engine 
 

The objective of using Coreworks® processing 
engine is to accelerate, using hardware, the most 
compute intensive parts of the algorithm. In this case 
it will be the computation of the H matrix to 
determine the maximum score value of the 
alignment. 

The Coreworks® processing engine has two 
major processing elements: the FireWorksTM, a 
Harvard RISC (Reduced Instruction Set Computer) 
architecture 32-bit processor, and the SideWorksTM, 
a reconfigurable hardware accelerator architecture. 

The FireWorksTM is used to control the 
accelerator configurations and data transfer 
from/into the GPP and from/into the hardware 
accelerator. 

The SideWorksTM is a reconfigurable 
architecture for hardware acceleration, which will 
also be implemented in the FPGA. This architecture 
uses Functional Units (FUs) to build datapaths as 
shown on the generic SideWorksTM template 
presented on Fig. 5. These FUs can be as simple as 
adders or registers to some more complex FUs. In 
this project one PE will be used as a FU. The 
reconfigurable possibilities of this accelerator allow 
more than one datapath to be defined in the FPGA. 
Therefore the user can select which datapath to use 
for each set of computations by control of 
FireWorksTM. On this project only one datapath was 
be developed for the sequence alignment purpose. 

 
 

 
Fig. 5 – SideWorksTM architecture template. 

 
 
4. Application Overview 
 

Our main application will run mostly on the 
GPP. The engine control and the hardware 
acceleration initialization will run on FireWorksTM, 
but the H matrix computation will run on 
SideWorksTM hardware accelerator. The application 
runs according to the flowchart presented on Fig. 6. 
 

 
Fig 6 - Application flow chart. 

 
The application begins by reading one 

sequence from the testing sequences file and one 
from the library sequences file. These sequences are 
then partitioned according to the limitations imposed 
that will be described in section 7. Each partition of 
the testing sequence will be compared to all the 
partitions of the library sequence before going on the 
next partition of the testing sequence. The 
computation part will end when all the partitions 
have ended. The result from the hardware 
accelerator will be the maximum score of the H 
matrix. As is show on Fig. 6, this value will be 
compared to a user defined threshold, and the trace 
back will only be executed if the score value is 
higher than the given threshold. Note that this 
threshold is defined in order to trace back only the 
sequences with high similarity values, because this 
increases the application efficiency. 

Considering that the data transfer of the 
complete H matrix would take too long versus the 
processing time of the calculus, the traceback 
function rebuilds the H matrix until the computed 
score is equal to the score returned by the hardware 
and then starts the trace back itself. This option 
allows that, most of the times, the H matrix is not 
completely recalculated in software. Once the 
location of the maximum score is found a trace back 
is performed and the sequences local alignment is 
saved in a results file. Therefore the results file will 
have, for each comparison, the sequences being 
tested, the maximum score and the best local 
alignment. 

The application ends after each of the 
sequences in the testing sequences file is compared 
to all the sequences in the library file. 
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5. Datapath Implementation on the 
SideWorksTM 
 

As mentioned before, the datapath for 
SideWorksTM is built using FUs. Two new FUs 
where developed for this application, the PE FU and 
the Trigger FU. All other FUs used were already 
developed and available on the Coreworks® 
development platform. 

The PE FU is based on existing Process 
Elements [1][2][3], but modified to support partition 
computation and to be implemented on the 
SideWorksTM hardware accelerator. The PE FU will 
be described in more detail in section 6. The trigger 
FU is used to generate specific control signals used 
on the PEs. The Fig. 7 represents the datapath of our 
application for the SideWorksTM. 

 

 
Fig 7 - SideWorksTM datapath. 

 
The datapath is composed by a set of FUs 

being the most important the chain of PEs with the 
required FUs for input and output data. There are 6 
input memory blocks. Four memory blocks are 
related to the data from the substitution matrix, this 
data is already coded according to the element from 
the testing sequence that is assigned to each PE. 
Another memory block contains the initialization 
column to be used only by PE1. Finally the last 
memory block contains the sequence from the 
library which will be streamed through the PEs. For 
each PE there is a register that contains the element 

from the initialization line and another register with 
the value of α, which can be configured by the user. 
For the first PE there are two additional input 
registers. One contains the initialization of the 
maximum value, in the first computation contains 
zero, on all other situations (e.g. computing a 
partition) contains the maximum score inherited by 
previous partitions. The other register contains the 
score of the top-left neighbour initialization value of 
a partition. 

On the outputs there are two registers per PE 
and a memory block for the last PE. The registers 
will store the values of maximum score for that PE 
and the values from the last line that will be 
inherited by the next computation. The memory 
block will store the information for the values on the 
last column that will be inherited by the next 
computation. 

The Trigger FUs are used to generate a trigger 
signal from an enable signal. The enable signal starts 
at zero and changes to one at a certain cycle, this 
signal is used to start the computation. At the clock 
cycle that enable changes to one, the trigger signal 
will also change to one and stays with this value 
only for one clock cycle. This signal is used to store 
some values internally in the PE. Both signals are 
propagated through the PEs chain. 

 
 

6. Process Element Functional Unit  
 

As previously mentioned, this FU is based on 
the PE described in [1], however some changes have 
been made to adapt the PE. Fig. 8 illustrates the 
resulting PE after the changes. 

The main changes are related with the 
substitution matrix storing method and additional 
components to accommodate the computation of the 
H matrix using partitions. 

There are five registers used to propagate 
signals to the next PE, of these, four are used for the 
enable and trigger signals and the remaining one is 
used to store and propagate the elements of the 
library sequence. As shown in Fig. 8 the output that 
results from the maximum computation and the 
output of H(i,j) will also be propagated to the next 
PE. 

Each PE stores only the column of the 
substitution matrix related to the element of the 
testing sequence that has been assigned to. 
Therefore, each PE only needs to store 4 elements of 
the substitution matrix (for DNA) instead of the 16 
elements that compose the full substitution matrix. 
The elements of the library sequence are coded 
using 2 bits (for DNA) and will be used to address 
the corresponding substitution value. 
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Fig 8 - Process Element Functional Unit. 

 
The two multiplexers on the left of Fig. 8 are 

used for the partition of the computation of H 
matrix. The inputs for the multiplexer on the top left 
change according to the PE position on the PEs 
chain. In PE1 this multiplexer is used to select 
between the top-left neighbour initialization element 
and the input of the initialization column, for all 
other PEs this multiplexer selects between the 
initialization line input of a partition or the result 
from previous PE. The bottom left multiplexer 
introduces the initialization line top element. 

The last multiplexer on the right is used to deal 
with negative values on the outcome computation of 
H(i,j). In these cases the output of the PE needs to be 
zero as shown in equation (1). Finally one register 
has been added to store a configurable α value. 
  
7. Limitations 
 

During the test of the application some 
limitations have been detected. The most important 
limitation is related to the maximum number of FUs 
that we are able to use in the datapath. The 
maximum number of PEs that has been synthesized 
successfully was 30, even when there is space 
available on the target FPGA. This number limits the 
partition size for testing sequences to 30 elements 

per partition. Another limitation is related to the 
vector size that can be transferred to FireWorksTM 
and SideWorksTM. It is possible to transfer vectors up 
to 128 elements, which limits the partition for the 
library sequence. For testing purposes the size of the 
partition used was 30 for the testing sequence and 
120 for the library sequence. 

The size of the registers used introduces 
another limitation on the maximum computable 
score without having overflow. All registers in the 
datapath have 11 bits, since the datapath uses signed 
calculation this limits the maximum computed score 
to 1023. 

The results are presented with these limitations, 
although, there are solutions under study to improve 
the application. 
 
8. Area Results 
 

The project was implemented in a Spartan 3 
XC3S5000 FPGA. Table 1 presents area results of 
implementations with different numbers of PEs in 
the Coreworks® processing engine platform. 
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Table 1 – Areas of different implementations. 

 
The SideWorksTM and FireWorksTM templates 

occupy a considerable amount of area (slices). 
Adding FUs to the SideWorksTM template does not 
increase the total number of occupied slices too 
much. One PE alone (without SideWorksTM 
overhead) occupies about 99 slices on this FPGA. 
However, from Table 1 is possible to average the 
number of occupied slices for each PE to be 134 
slices. These overhead results from the extra FUs 
required on the data path by the SideWorksTM 
platform. Therefore, for the referred FPGA, we 
should be able to accommodate 168 PEs on the 
SideWorksTM hardware accelerator if no practical 
limitations exist.  
 
9. Analysis of Application Performance 
 

After the circuit has been synthesized and 
implemented using the proposed hardware on the 
FPGA, the minimum clock cycle attained was 
27.7ns, resulting in a maximum frequency of 
36MHz. Table 2 presents average load time of a 
configuration and different types of data transfers for 
128 element vectors. 
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Table 2 – Configuration and data transfer times in clock 
cycles. 

 
From these results is possible to understand the 

impact of data transfer times on the application 
performance, especially with small partitions, 
because smaller partitions require more 
computations and more data transfers. 

 
In Table 3 is presented performance of the 

application for different partition sizes measured in 
Cell Updates Per Second (CUPS), the number of 
cells from the H matrix processed per second. 
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Table 3 – Processing times in CUPS for different 
sequences. 

 
From Table 3 we can calculate that the 

application performance increases with the size of 
the sequences being processed. This occurs until the 
sequences being tested have to be partitioned and 
each partition is computed by the SideWorksTM 
accelerator separately. However, the performance of 
the total alignment computation increases with the 
sequences sizes. 

According to [5] an optimized application 
(software only) has typically around 52 MCUPS 
average performance. Comparing this result with our 
results presented in Table 3 is possible to verify 
acceleration up to 13 times. 

Other FPGA implementations of S-W 
algorithm achieve performances for LGP in the 
order of 9.2 GCUPS [1], but these results are 
achieved with a chain of 168 PEs and without 
partitions on the H matrix computation. If the 
limitations described for our application are solved, 

it is possible to achieve performances in the order of 
GCUPS as well. 

 
10. Conclusions 
 

In this work we have implemented the S-W 
sequence alignment algorithm using a hardware 
accelerator platform. The selected platform was the 
Coreworks processing engine, which has a RISC 
processor (FireWorksTM), and a specific hardware 
accelerator (SideWorksTM). 

Although some practical limitations were 
encountered on the selected platform, we were able 
to implement a complete alignment application 
using the S-W algorithm with partitions. 

The results showed that a considerable speed 
up was achieved even when partitions have to be 
used and some additional overhead is introduced by 
data transfer. 

As future work we plan to overcome the 
platform limitations and implement the trace back 
and other parts of the algorithms in the FireWorksTM 
processor. 
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Abstract 
 

Very often in signal and video processing 
applications, there is a strong demand for accessing the 
same memory location through multiple read ports. For 
video processing applications like Motion Estimation 
(ME), the same pixel, as part of the search window, is 
used in many calculations of SAD (Sum of Absolute 
Differences). In a design for such applications, there is a 
trade-off between number of effective gates used and the 
maximum operating frequency. Particularly, in FPGAs, 
the existing block RAMs do not support multiple port 
access and the replication of DRAM (Distributed RAM) 
leads to significant increase in the number of used CLBs 
(Configurable Logic Blocks). The present paper analyses 
different approaches that were previously used to solve 
this problem (same location reading) and proposes an 
effective solution based on the use of efficient 
combinational logic schemes to synchronously and 
simultaneously read the video pixel memory data 
through multiple read-ports. 

 

1. Introduction 
 

With the increased demand for multi-tasking and 
parallel processing, the modern applications for 
FPGA and ASIC based memory architectures cannot 
rely just on single port or dual port memories. 
Possible solutions for this problem are to increase 
the bus bandwidth and implement multiple port 
memories. Especially, when considering 
synchronous memories, implementing multiple read 
operation is required [1-2]. There are many 
applications where multiple read operations are 
highly required. For example, in robotic vision 
system, the object recognition system has to search 
many samples of live video frames and output one 
object that has minimum error. In reconfigurable 
vision systems, a shared memory is necessary to 
access the video content through multiple resources 

[1-2]. Similarly, in video compression systems, a 
shared memory is required to process many samples 
of video frame blocks in one clock cycle. The 
present paper focuses on the key role of multi-port 
SRAM (Static RAM) in motion estimation 
application [3]. Section 2 explains the memory 
architecture requirements for motion estimation. 
Section 3 discusses performance issues of some 
previously reported solutions. Section 4 proposes a 
new architecture suited for FPGAs. Section 5 details 
the experimental results, followed by Section 6 with 
the concluding remarks. 

 
 

Fig. 1(a). Illustration of ME Process 
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Fig. 1(b). Architecture for real time processing of 
Motion-Estimation 
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2. Multi-Read Port Memory in Video 
Processing 
 

For compressing video signals, a video encoder 
eliminates the temporal and spatial redundant 
information and encodes the error/residual 
information. For doing this, a video encoder 
typically uses predictive encoding techniques, so 
that residual information is further reduced. Motion 
estimation and motion compensation are the typical 
tools in a block-based video encoder that predicts 
and generates the video frames temporally. In a 
block based video encoder, each frame is divided 
into rectangular or square blocks of pixels, and 
hence prediction and other tools can be applied on 
each block. Especially when motion estimation is 
considered, the problem is very challenging since it 
is the most computationally intensive tool amongst 
all the tools in a video encoder.  

Motion estimation is the process of searching the 
best matched block of a video frame in the 
past/future frame’s ROI (Region of Interest, 
technically termed as search window) as shown in 
Fig.1(a) [3]. In order to find this best match, the ME 
algorithm uses matching criteria like SAD (Sum of 
Absolute Difference) or MSE (Mean Square Error) 
among others. For real-time applications, it is often 
required to apply parallel computation schemes. 
Instead of computing the SAD block by block 
sequentially, computing a set of blocks in parallel 
makes the ME task more efficient. Hence in real-
time, it is required to access many blocks of pixels 
data in parallel from local memory, and send them to 
the SAD estimator as shown in Fig.1 (b). It is here, 
where the major design challenges occur, on how to 
implement the local memory without impairing 
overall performance. 

 

3. Approaches for Implementing Multi-
Read Port Memory 

 
For writing the pixel block to local memory unit, 

the external bus is constrained to either 32 or 64 bits. 

Hence, there is no need to optimize the writing 
procedure. Instead, a design will have a great 
necessity in implementing multiple reading 
procedures in this scenario. For implementing the 
read ports there are many possible approaches [4-6] 
as described in the following sub-sections. 
 
3.1 Memory Replication 

Memory replication is the simplest way to 
implement multiple read ports. For reading the same 
memory location through ‘n’ multiple read ports, the 
memory is replicated ‘n’ times and the data is 
written to each of the write ports in parallel as 
shown in Fig.2(a). In case of FPGA BRAMs, for an 
application where one BRAM is required for one 
read port, the design has to replicate ‘n’ BRAMs for 
n read ports. The main disadvantage in this approach 
is the increase of system area and power.  

 
3.2 Memory Banking 

Memory banking technique divides memory 
capacity across smaller banks of physical memory. 
The total read and write port widths are also divided 
equally among each bank. Multiple requests to the 
same memory banks are usually handled by an 
arbiter. This is somewhat similar to memory 
replication except that in each memory bank, the 
total memory is divided instead of replicated, as 
shown in Fig.2 (b). However, the memory banking 
technique gives a limited support to multiple read 
operations, since in a given cycle only one read 
operation is possible from each memory bank. When 
the same memory bank is accessed by multiple 
sources, then each has to wait until its turn in arbiter 
is initiated. When all the banks are provided with a 
read instruction for each, the data can be read in 
parallel. 
 
3.3 Streaming Multiport Memory 

In streaming multiport (also called stream-
buffered multiport or multi-pumping) memory, the 
entire memory is provided with only one read port 
(and one write port), and each read requester is 
provided an internal register to hold the requested 
data as shown in Fig. 2(c). Multiple requests are 
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Fig. 2(a). Replicated Multiport 
Memory Architecture 

Fig. 2(b). Banked Multiport Memory 
Architecture 

 

Fig. 2(c). Streaming Multiport 
Memory Architecture 
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Fig. 3. Multiplexed Read Port (MRP) memory architecture for a single column of memory with ‘d’ rows and ‘m’ 

number of read ports 

arbitrated using an arbiter or a multiplexer, with a 
clock frequency that is multiple of external clock 
frequency. Hence, this scheme decreases the 
maximum external clock frequency and degrades 
system’s performance as shown in Section 5.  
 
3.4 Other Multiport Memory 

Besides the aforementioned architectures, there 
are other possible multi-porting techniques like 
bank-switching multiport memory, cached multi-
port memory, etc. In bank switching, an external 
latch is added to the memory controller, to select or 
switch between memory banks. In cache based 
multi-port memory, a local cache is provided for 
each read-port, and a cache coherence protocol is 
used to synchronize cache contents. But in cache 
based porting, the read request may experience delay 
(variable delay) depending on the request sequence 
pattern and cache coherence protocol.  
 

4. Proposed Technique 
 

To handle multiple read transactions within the 
same clock cycle and without latching, each memory 
location, one possibility is to output data to all the 
read ports through a multiplexer circuit as shown in 
Fig.3. The select line for this multiplexer will be 
nothing but the read address port. Through this way 
the memory can have any number of read ports, 
independent of number of write ports. 

As shown in Fig.3, the data is written to DRAM 
(Distributed RAM) column through one write port. 
Data is read through ‘m’ read-ports via multiplexer 
and each select line is the read address for that 
particular read operation. The advantage in this 
circuit is that all the address lines can be selected in 
the same clock cycle and hence any number of 
memory locations can be read synchronously in one 
clock cycle. The second advantage is that, the same 
memory location can be read through multiple read 

ports and hence data can be shared with multiple 
ports without any extra cycles. 

The memory architecture shown in Fig.3 is for 
one column of memory (or one column of block of 
pixels in a video frame), however, the proposed 
MRP (Multiplexed Read-Port) memory method can 
also be applied to an entire block of pixels in a video 
frame. Typically, the motion estimation block 
requires only luminance information, where each 
pixel is 8 bits wide for the luminance component. 
The write port is drawn from external memory 
which is typically constrained to 64 bits wide in 
modern FPGAs [7]. Hence each row could be 64 bits 
wide storing 8 pixels of information. Thus in one 
clock cycle, 8 pixels of memory are written.   

Fig.4 shows the application of the proposed 
concept. N represents number of pixel columns in a 
block of video frame. The internal architecture of 
each pixel column memory is shown in Fig.3. 
Usually, for H.264/AVC video standard, the 
maximum block size is 16x16 pixels and hence N 
will be equal to 2 (=16/8) in this case. For the latest 
video coding standard HEVC, the maximum block 
size is 64x64 and hence N will be equal to 8 (=64/8) 
for this standard. Similarly, the memory depth‘d’ is 
equal to 16 and 64 for H.264/AVC and HEVC, 
respectively.  The variable ‘M’ is the number of 
parallel read ports in each pixel column memory. 
Data is written through one write port, and the 
corresponding memory column is selected using 
data and address select lines. At the output, the data 
is read through M read ports from each column. 
From all the NxM read ports, any number of read 
ports can be selected through the switch box. This is 
similar to memory banking, but the main difference 
is that here the designer can customize M, and can 
read multiple ports from each bank/column. While 
in memory banking, the read request is possible for 
only one memory location, in single cycle from each 
bank. Furthermore, in the design shown in Fig.4, M 

ISBN: 978-972-8822-27-9 REC 2013 91



Table 1. Virtex-5 FPGA synthesis results for different 
memory architectures. 

 
Memory 

Replication 
Stream 
Buffer 

MRP 

#Slice LUTs 
4573  

 
2427  
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LUT Utilization  
(#Total LUTs : 69120) 

6% 3% 6% 

#Slice Registers 12672  5260   4480  

Slice Regs Utilization  
(#Total Slice Regs: 69120) 

18% 7% 6% 

#LUT-FF pairs 16121  6301  7899  

Total LUT-FFs Utilization  
(#Total LUT-FFs: 69120) 

23% 9% 11% 

Max.Frequency (MHz) 329.96 273.09 335.21 
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Fig. 4. Proposed Multiplexed Read Port (MRP) 

memory architecture.. 

need not be the same in each bank/column, and the 
designer has full flexibility to choose M, depending 
on the algorithm used.  
 

5. FPGA Synthesis Results 
 

The proposed MRP method was implemented in 
verilog and synthesised using Virtex-5 FPGA [7]. 
The row width for each memory location is chosen 
as 64, since the external bus is also configured to 64, 
and thus able to write 8 pixels of data in one clock 
cycle. The memory depth ‘d’ is configured as 16, 
and the memory columns ‘N’ is chosen as 2, which 
is suitable for a 16x16 block size pixels. In the 
proposed architecture, the value ‘M’ need not be a 
power of 2 (M=2integer), it can be any odd number 
also. Without losing generality, ‘M’ is chosen as 5 
implying that 5 concurrent read operations are 
possible from each memory column. Hence number 
of replication memories in memory replication 
architecture and number of read ports in stream-
buffered memory architecture are also chosen as 5. 

The proposed method is compared with the other 
methods – memory replication method and streamed 
memory buffer method. Memory banking is not 
considered for comparison since it is not able to 
support multiple read operations. Table 1 shows the 
comparison results. The results show that MRP 
method has the highest maximum operating 
frequency, with slight increase in number of CLBs 
(LUT-FF pairs) used in FPGA. The memory 
replication method has the highest resource usage, 
due to increase in the number of slice registers. The 
stream buffered method has the lowest maximum 
operating frequency due to the combinational logic 
of arbiter switching used.  
 

6. Conclusions 
 

This paper presented a multiple port read 
memory architecture. The propose architecture was 
synthesized using VIRTEX-5 FPGAs. The synthesis 
results show that the proposed MRP (Multiplexed 
Read Port) memory architecture maintain a good 
balance between FPGA resources used and 
maximum operation frequency. This architecture can 
be used for video processing applications like 
motion estimation, intra prediction or in other 
applications where simultaneous read operation from 
a common shared memory is required. Performance 
evaluation for motion estimation methods in video 
processing applications, using the aforementioned 
architecture will be investigated in future 
contributions on this line of research. 
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Abstract

The Discrete Cosine Transform (DCT) plays an essential
role in today’s media-driven world, as it is at the heart of
the most widely used compression algorithms for both im-
ages and videos, such as JPEG or the MPEG family codecs.
Given its ubiquity and high computational requirements, it
is common to find it implemented as an accelerator core
within more complex systems, such as SoCs, in order to
keep power consumption low and enable higher processing
throughputs. Although several hardware implementations
exist, and are already widely discussed in the literature,
their integration with a generic computing framework is
seldom discussed. In this paper, a co-processor architec-
ture for the computation of the DCT on a generic process-
ing platform is presented. A publicly available DCT core is
interconnected to a DMA engine through an Avalon Stream
interface, which performs data transactions with a general
purpose processor, by using a standard PCI Express inter-
face. Implementation results on an Altera FPGA, including
resource utilization and maximum achievable throughput,
are presented and discussed.

1. Introduction

Despite the recent advances in both storage and trans-
mission of digital data, the need for efficient compres-
sion mechanisms for media applications not only has been
maintained but has even seen an increase due to the most
recent trends in consumer electronics. In fact, even though
high throughput fiber-based broadband connections are be-
coming the norm among conventional computers, there is
a new class of devices that often deal with mobile inter-
net connections, operating at a fraction of the bandwidth
available on their fixed counterparts. Many of these com-
pression mechanisms make use of the 2D Discrete Cosine
Transform (DCT) to encode image and video data. In fact,
this transform is at the heart of some of the most commonly
used video and image codecs, such as the MPEG-1/2/4 and
JPEG standards, and due to its computationally intensive
nature, it constitutes a good target for optimization.

One of the most common approaches to tackle the prob-
lem of decoding high-quality video in real-time has been
to offload the necessary computations to dedicated hard-
ware. However, the development and integration of these
co-processors with the rest of the system is not trivial, and

special attention must be given to the communication be-
tween the accelerator, the processor or the system mem-
ory, as these can easily become the bottleneck, hence limit-
ing the performance gain that could potentially be achieved
with the dedicated unit.

In this paper, a co-processor architecture to perform the
2D discrete cosine transform (2D DCT) is presented. The
proposed architecture makes use of a DCT core, devel-
oped by Unicore Systems [1], connected to a DMA engine
through an Avalon Stream interface. The DMA engine is,
in turn, driven by a PCI Express interface which acts as an
abstraction of the upper layers of the system. The resulting
design was implemented and tested using an Arria II FPGA
by Altera.

The rest of the paper is organized as follows. Section 2
provides an overview of the 2D DCT and how it fits within
the JPEG and MPEG standards. Some common implemen-
tation techniques are briefly discussed. In section 3, the
structure of the PCI Express interface and the associated
DMA engine is presented. Section 4 characterizes the DCT
core with emphasis on the latency, throughput, and cus-
tomization options, and describes the wrapper entity that
enables it to be accessed through an Avalon Stream inter-
face. Section 5 presents and discusses the obtained results
for the target device, including maximum operating fre-
quency and resource usage of the various components of
the architecture, as well as the overall system performance,
discussing possible bottlenecks. Section 6 concludes this
paper by summarizing the characteristics and performance
of the architecture and proposes future work directions.

2. DCT Overview

A digital image, which may represent a frame in a movie
sequence or be just a picture, is a collection of pixels ar-
ranged in a matrix-like fashion. Each of these picture el-
ements may have associated one or more intensity values,
depending if it is a colour image or, instead, a grayscale
one. In practice, chroma sub-sampling is usually employed
in a colour image to reduce the amount of data used in the
two colour channels, usually referred to as chrominances,
thus reducing the total storage needs of the image [2]. Even
with this technique, the total amount of data of a motion
picture would make it impractical to store and transmit
any content with adequate resolution and quality, let alone
high-definition video.

It is then clear that some form of efficient compres-
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sion must be employed to make this type of image con-
tent manageable by all sorts of devices. Image compres-
sion techniques achieve reductions in the total content size
by exploiting two main concepts: irrelevancy and spatial
redundancy between neighbouring pixels, which relies on
the knowledge that the Human Visual System (HVS) is not
equally sensitive to all features in an image. While the first
concept does not imply any loss of data, the latter forcibly
results in data loss, as it is not possible to recover elements
that have been discarded. However, since the exploitation
of spatial redundancy is generally achieved through the use
of transforms, which are usually implemented with a fi-
nite arithmetic precision, this processing element also leads
to some data loss. Hence, the goal of any lossy compres-
sion algorithm, i.e, one whose operation does not produce a
mathematical equivalent of the input image, is to maximize
the perceived quality of the compressed image while reduc-
ing its size as much as possible. Conversely, lossless algo-
rithms cannot exploit irrelevance and, as such, must only
rely on the reduction of statistical redundancy, using tech-
niques that are widely used for data compression in general,
such as entropy coding, in order to achieve the desired size
reduction.

In most image and video codecs, such as JPEG or the
family of MPEG-1/2/4 codecs, the DCT is extensively used
to reduce the correlation between neighbouring pixels. By
applying this transform to an (N×N) pixels block (with N =
4, 8 or 16), a map of frequency domain components is ob-
tained. Within this map, the first entry corresponds to the
average of the pixel values, the DC component, while the
rest of the entries represent the AC components, with in-
creasing frequency content as they move towards the lower-
right corner of the matrix. The 1D DCT can be formulated
as defined in [3]:

X(m) =

√
N
2

ξ (m)
N−1

∑
i=0

cos
(m(i+ 1

2 )π
N

)
x(i)

In the previous expression, x(i) represents the original
input sequence, whereas X(m) corresponds to its transfor-
mation. Thus, the index i denotes the coordinate in the spa-
tial (pixel) domain, whereas m represents the coordinate in
the transform-domain. Additionally, ξ (m) is defined as:

ξ (m) =






√
1
2

for m = 0 or m = N

1 for m = 1,2,..., N-1

In practice, the DCT computation is usually performed
by using precomputed values, the basis functions, meaning
that the output of the DCT operation will be a set of coeffi-
cients that are obtained from each of these basic elements.
These elements form a a (8× 8) kernel matrix T, which is
defined by [3]:

[T(m, i)] =

√
N
2

ξ (m)cos
(m(i+ 1

2 )π
N

)

A representation of the first 64 DCT basis functions is
presented in figure 1.

Figure 1. 64 basis functions of the 8× 8 DCT, where
the top-left entry corresponds to the DC component
and all the others to AC components [4]

.

Naturally, given that the DCT basis functions are inde-
pendent of the image to be transformed, the obtained results
cannot be optimal, as not every image possesses the same
frequency components and, as such, the representation of
the image could still be achieved with less coefficients if
these functions were specifically tailored for each image.
This is the principle behind of the Karhunen-Loeve Trans-
form (KLT), which achieves the highest degree of decor-
relation between transmitted coefficients by first determin-
ing the optimal set of basis functions for a given image,
through the computation of the eigenvectors of its covari-
ance matrix[5]. Implementing the KLT, however, requires
a great computational effort and the fastest-algorithms that
are available for its computation are not as good as for other
transforms. In addition, its superior compacting capabili-
ties are not necessarily reflected in the resulting perceived
quality of the image [5]. As such, the DCT is usually pre-
ferred as it closely approaches the statistically optimal KLT
for highly correlated signals [6], and still provides better
energy compaction than other popular transforms, such as
the Fast Fourier Transform (FFT), making it more appro-
priate for image processing [4].

Most conventional approaches to the computation of the
2D DCT for an N×N block usually adopt a row-column de-
composition, followed by the application of two 1D DCTs
with N points [3]. However, this row-column method re-
quires a matrix transposition architecture which increases
the computational complexity as well as the total resource
usage. On the other hand, alternative polynomial ap-
proaches reduce the order of computation, as well as the
number of required adders and multipliers [7]. Due to its
popularity and practical interest, several fast implementa-
tions of the discrete cosine transform exist, such as the ones
proposed by Lee, Hou and Cho [8][9][10]. Among them,
the most efficient is the Nam Ik Cho (Chan and Ho) algo-
rithm [6].

When the DCT is integrated within a codec, the com-
putation of the coefficients is followed by a quantization
module, which exploits irrelevancy and, as such, it may in-
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troduce some error. In this operation, each DCT coefficient
is divided by a Quantization Coefficient and then rounded
to an integer value. The entries of the associated Quantiza-
tion Matrix are adjusted so that a desired perceptual quality
is achieved, which usually involves setting different quanti-
zation steps for each coefficient, as the HVS is not equally
sensitive to all frequency components.

3. PCI Express and DMA engine

The PCI Express framework on which this architecture
is based was proposed in [11] and consists of a general-
purpose-processor connected to a PCI Express controller,
which accesses a custom peripheral on a reconfigurable
device through the use of a memory-mapped interface de-
fined in the Altera’s family of Avalon interconnections. The
transfer of data to and from the on-chip memory is accom-
plished by two DMA controllers, which operate simulta-
neously, thus exploiting the full-duplex capabilities of the
PCI Express Link.

The architecture herein presented proposes a modifi-
cation to this PCI Express framework, which trades the
memory-mapped interfaces for a simpler and faster stream-
ing interconnection, the Avalon Stream. In addition, since
now the accelerator directly receives the data, there is no
need for an on-chip memory, apart from those used by each
DMA controller to store the corresponding descriptors. As
in the original version, two DMA controllers are used to
allow the independent and simultaneous transfer of data to
and from the attached peripheral. A block-diagram repre-
sentation of the modified framework is shown in figure 2,
where the memory elements for the storage of the DMA
descriptors was omitted for clarity purposes.

Figure 2. Architecture of the modified PCI Express
framework.

A Kontron MSMST board [12] was used for the imple-
mentation of the system. The key features of this board are
an Intel Atom E665C microprocessor, clocked at 1.3 GHz,
and an Altera Arria II GX FPGA interconnected through
two PCIe 1x links. Only one of these hard PCI-Express
controllers is used to communicate with the reconfigurable
fabric, which is driven by a 125 MHz clock signal provided
by the controller.

4. DCT Core with Avalon Stream Interface

Although the DCT operates on fixed-size blocks, its op-
eration can be implemented in a streaming fashion, pro-
vided that the blocks are inserted sequentially, as a stream

of data. This approach yields higher processing through-
put when compared to a standard memory-mapped inter-
face, which is inherently more complex and introduces ad-
ditional overhead on the data transactions. The follow-
ing sections describe the implementation of a stream-based
DCT core.

4.1. DCT Core and Output Buffer

The computation of the 2D DCT in the herein presented
architecture is performed by a publicly available soft-core
developed, by Unicore Systems, a start-up company based
in Kiev, Ukraine [1]. The selection of this particular imple-
mentation of the DCT resulted from a preliminary evalu-
ation of three different soft-cores available at OpenCores
1, an open source community dedicated to the develop-
ment and sharing of IP cores. The main aspects that were
taken into consideration during the selection process were
the resource occupation and maximum achievable operat-
ing frequency on the targeted FPGA device, the processing
throughput and initial latency and, finally, the customiza-
tion options and available documentation for the core.

The selected DCT core performs an 8×8 2D DCT and
is fully pipelined, meaning that blocks can be input in su-
cession, with no waiting period between them. Given its
deeply pipelined structure, an initial latency of 132 clock
cycles is imposed before the first result is obtained, after
which the core stabilizes at a processing rate of 64 pixels (a
full block) in 64 clock cycles, i.e, one pixel per clock cycle.
The main features of the core are summarized below:

• 1 pixel per clock cycle throughput

• 11-bit input coefficients

• 12-bit output results

• 132 clock cycles of latency

• Signed or unsigned input data

• Scaled or unscaled output data

The 2D DCT is computed through a row-column de-
composition, by first transforming the columns and then
the rows. The number of operations that are needed to com-
pute each 8×8 block are significantly reduced by employ-
ing the Arai, Agui and Nakajima 8-Point DCT algorithm,
which results in only 13 multiplications [13]. Due to the
wide use of resource sharing, only 4 hardware multipliers
are required. Moreover, if the scaled output option is se-
lected, the number of multiplications is reduced to 5, re-
quiring only 2 hardware multipliers. In such configuration,
however, the proper scaling must be performed at a later
stage, before the entropy encoding.

The corresponding signal flow graph of the architecture
that computes each of the 1D DCTs that are used for com-
puting the full 2D DCT is depicted in figure 3. In this
graphical representation, multiplications are represented by
a box containing the value of the multiplication coefficient,

1OpenCores - www.opencores.org
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while additions are simply represented by the intersection
of two segments. This representation makes it easy to un-
derstand the difference in the number of multiplications be-
tween the scaled and non-scaled output options of the core.
In the case of the former, the 8 multiplications, labeled
from S0 to S7, are not performed, as they are relegated to
the next stage of the coding algorithm, thus reducing the
total number of multiplications to 5. When compared to
the 64 multiplications that are needed when using a direct
matrix multiplication approach, the performance and area
gains resulting from the use this algorithm are evident.

Figure 3. Signal flow graph for the scaled 1D DCT.

To further reduce the resource usage, the intermedi-
ate results are stored and transposed by using appropriate
FIFO buffers based on SRL16 elements, implemented with
LUTs, which means that no Block RAMs are needed.

Hence, the core interface consists of two data buses for
input and output of pixels and DCT coefficients, a clock
signal, and four control signals, as described in table 1.

Signal Direction Description

RST IN Synchronous reset signal for the core
EN IN Clock enable

START IN Triggers start of the computation
RDY OUT Signals the first valid DCT coefficient

Table 1. Control interface of the DCT Core.

After the START signal is asserted, a new input value is
input every clock cycle, while the EN signal is kept HIGH.
Similarly, after the RDY signal is activated, a new DCT co-
efficient is outputted on every rising edge of the clock. This
means that it is not possible to input new pixel values with-
out outputting the same number of coefficients and vice-
versa. While this is not a problem if the core is always used
in a streaming fashion, i.e, fed with a continuous stream of
input data and sampled at the same rate, when the reading
or writing operations need to be independently interrupted,
the result will be loss of data (in the case that a write is
performed without a read), or block corruption (if a read
was done with no accompanying write, thus pushing a non-
valid input into the core and affecting the computation of a
full 8×8 block).

Since the Avalon Stream interface does not, by itself,
guarantee uninterrupted stream operation, it was necessary

to add a FIFO element to the output of the core. In this
way, the DCT core will push an output coefficient to the
FIFO whenever a new pixel value is input and the FIFO is
not full, thus avoiding any loss of data. Block corruption is
also avoided, as the DCT coefficients will be only read from
the FIFO until it is empty, at which point the read requests
are ignored until the FIFO is non-empty again, which is
achieved by inputting new values into the core.

4.2. Avalon Stream Interface

The existing family of Avalon interfaces was developed
by Altera to provide an easy way to connect components
within their FPGAs. The standard includes interfaces ap-
propriate for streaming high-speed data, reading and writ-
ing registers and memory, and controlling off-chip devices.

Considering that the architecture described in the previ-
ous subsection does not define addresses of any kind, nor
does it directly interface with a memory component, the
most appropriate interface to use in this architecture is the
Avalon Stream, which provides an unidirectional flow of
data in a point-to-point fashion. Since both read and write
operations must be performed in the core, two instances of
this type of interconnection must be used. When writing,
the core will act as a sink and the DMA controller acts as a
source. When reading the roles are reversed.

In addition to the clock, reset and data bus signals, each
instance of the Avalon Stream interface can also include a
valid and ready signal. These two signals can be used to
control the flow of data from the source to the sink, which
corresponds to backpressure, in the Avalon interface termi-
nology. In this case, the source will assert the valid signal
whenever it has new data to send, but should only move to
the next data element after the sink has acknowledged that
it will receive that given element. Figure 4 depicts such a
situation.

Figure 4. Data transaction from source to sink with
backpressure enabled [14].

The width of the data bus can be configured to take
any value between 1 and 4096 bits. Regardless of this
size, the data transaction will take a single clock cycle. As
such, this design parameter can and should be adjusted to
maximize the communication efficiency between the co-
processor and the DMA-engine. To allow these adjust-
ments to be made at any time in the design process, the
Avalon Stream wrapper developed for the DCT core does
not rely on a specific data width value. Instead, it uses a
generic parameter to define this value, which in turn con-
figures an Input Buffer that is placed right before the input
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of the core. This buffer assures that the Source does not
write more pixel values than the DCT core can handle. As
such, if the data width is defined to be 32 bits, correspond-
ing to four 8-bit values, the Input Buffer will only assert
the valid signal again after the four pixel values have been
input into the core. At the output of the FIFO, however, no
buffering is employed, as each of the 12-bit output values
is sent within a 32-bit word. Therefore, while a full 32-bit
value is transferred to the upstream DMA controller, only
the 12 least-significant bits contain any information.

Figure 5 presents a block diagram of the full accelerator
structure.

Figure 5. Block diagram of the accelerator architec-
ture.

5. Implementation Results

The full system was assembled using Altera’s Qsys im-
plementation tools, while resource usage and frequency
figures were obtained in Quartus for the Arria II GX
EP2AGXE6XX FPGA device. A summary of the hardware
resource requirements for both the full framework and the
DCT accelerator unit are presented in tables 2 and 3, re-
spectively.

Resource Utilization Available

LC Registers 8 945 (17.68 %) 50 600
LC Combinationals 6 917 (13.67 %) 50 600
Block memory bits 665 459 (12.39 %) 5 246 k
DSP 18-bit element 7 (2.24 %) 312

Table 2. Resource usage of the full system.

Resource Utilization Available

LC Registers 3 110 (6.15 %) 50 600
LC Combinationals 1 488 (2.94 %) 50 600
Block memory bits 768 (0.01 %) 5 246 k
DSP 18-bit element 7 (2.24 %) 312
Multiplicator 12-bit 2
Multiplicator 18-bit 2

Table 3. Resource usage of the DCT core.

By taking into account the Logic Cell (LC) instantia-
tion reports, it can be concluded that the DCT core has a

significant influence on the hardware resources of the ar-
chitecture. This observation is supported by noting that
a hard-silicon PCIe link controller is being used to pro-
vide the PCIe connectivity of the architecture, instead of a
resource-heavy soft solution implemented on the reconfig-
urable fabric. Thus, this element is not included in the hard-
ware resource usage results. In fact, from a resource usage
point of view, the system is composed of only the DCT ac-
celerator core and two DMA controllers, each with their
own descriptor buffer. These buffers account for nearly all
of the block memory usage, as the DCT core only requires
768 bits for the 12x64 output FIFO.

Hence, it is interesting to note that while the core was
originally targeted for Xilinx FPGA devices and the stor-
age to accommodate the intermediate results was described
in such a way as to utilize the SRL16 elements instead of
block RAM memory, the Quartus synthesis tool was also
able to avoid the use of these elements without any addi-
tional modifications to the core VHDL description.

The DSP allocation, on the other hand, did not reveal the
same degree of optimization. In fact, although the synthesis
tool reported a total of 4 multipliers, two of them 12-bit
wide and the other 18-bit wide, as expected from the core
specifications, 7 DSP 18-bit element were also used. This
seemingly odd result can be understood by examining the
structure of the DSP block for the targeted FPGA, depicted
in figure 6.

These blocks are designed to accelerate the most typical
digital signal processing operations, by including a com-
bination of dedicated elements that perform multiplication,
addition, accumulation and dynamic shift operations [15].
Each of these entities consists of two half-DSPs, which
share most control signals but are, for the most part, in-
dependent. Each half-DSP contains four 18x18 bit signed
multiplicators. However, since the output is limited to 72-
bit, only two multiplications can be performed. Unfortu-
nately, due to the target applications of these elements, it
is not possible to perform two independent multiplications
within the same half-DSP, as their output is combined, as
seen in figure 7. As such, when creating an independent
multiplier, the synthesis tool will use two 18-bit elements.
Similarly, to implement independent 12-bit multiplications,
the tool will also use two 18-bit elements.

Thus, the total number of 18-bit elements should be 8,
but by carefully inspecting the core’s VHDL description,
it can be seen that one of the 12-bit multiplications is fol-
lowed by an addition. Therefore, the synthesis tool is able
to fully exploit the internal architecture of an half-DSP by
implementing these two operations with only one of these
elements. In particular, one of the two 18-bit multipliers is
used to perform the 12-bit multiplication itself, while the
other is used to pass the second operand of the addition to
the adder within the half-DSP structure, as depicted in fig-
ure 7. Since only one of the 18-bit elements is used for an
actual multiplication, the tool reports the usage of only one
DSP 18-bit element for this case, which results in a total us-
age of 7 of these elements for the full core, as all the other
multipliers are of an independent nature.

To determine the maximum operating frequency of the
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Figure 6. Block-diagram of a full DSP block in Arria II
devices [15].

Figure 7. Basic two-multiplier adder building block in
Arria II devices [15].

DCT core and, consequently, its maximum throughput, a
timing analysis was performed using the TimeQuest Tim-
ing Analyzer. The result was a maximum operating fre-
quency of 245.88 MHz, which is significantly higher than
the 125 MHz clock, obtained from the PCIe link, which is
used to drive the accelerator in the architecture herein de-
scribed. As such, the maximum throughput of the core is
limited by the PCIe interface clock and is given by:

T hroughput =
12∗ fclk

DMAwidth/8

After the steady state has been reached, on every clock
cycle the DCT Core outputs one 12-bit DCT coefficient for
every 8-bit input. Thus, for a DMA data bus width of 32-
bit (DMAwidth) and a clock frequency ( fclkc) of 125 MHz,
the resulting throughput is 375 MBit/s. However, from the
DMA perspective, the core outputs 32-bit data values, al-
though only 12 of those bits are significant. In these cir-
cumstances, the actual transaction throughput, i.e, based
on 32-bit word transfers, increases to 1000 MBit/s

To characterize the proposed platform in terms of the
maximum achievable throughput, a simple FIFO was in-
serted in the place reserved for the DCT accelerator, in or-
der to simulate a situation where the latency of this element
is negligible when compared to the operation of the DMA
controllers and PCIe interface. The results showed that, for
a big enough chunk size, i.e, from 16384 bytes upwards,

the throughput saturated at 800 Mbit/s, as shown on fig-
ure 8. This allows us to conclude that, since the effective
throughput of the DCT Core is still higher than this value,
the performance of the system will exhibit the behaviour
shown in figure 8.

Figure 8. Evolution of the data transfer throughput for
an ideal stream-based accelerator for different chunk
sizes.

6. Conclusion and Future Work

The presented manuscript described and discussed, the
integration of a 2D DCT core with a generic PCI Express
platform for stream-based dedicated accelerators. The in-
terface between the PCIe link and the core was accom-
plished by employing a standard data stream interconnec-
tion, as defined in the Avalon interfaces family. The han-
dling of data transactions to and from the peripheral is as-
sured by two DMA controllers, which enable the simulta-
neous upstream and downstream of data.

The implementation results on a Kontron MSMST
board featuring an Intel Atom CPU clocked at 1.3 GHz and
an Altera Arria II GX FPGA revealed that the design makes
an efficient use of hardware resources. However, the at-
tained results also suggest that the DCT core can still bene-
fit from a revision in order to optimize it for Altera devices.
Specifically, in what concerns the particular characteristics
of its DSP blocks.

Finally, this paper shows that the bottleneck in the pro-
posed platform does not lay on the accelerator itself, but
instead on the remaining system, namely on the operation
of the DMA controllers and the PCIe link. Future work
may consider a different and independent clock domain for
the DCT core, at least two times faster than the PCIe clock.
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Resumo 

 
As capacidades de processamento paralelo e de 

reconfiguração, aliadas ao baixo custo de 
desenvolvimento, têm conduzido à crescente 
utilização de dispositivos eletrónicos baseados em 
FPGA, em detrimento de ASIC, em sistemas de 
monitorização e controlo de processos. A sua 
capacidade de reconfiguração dinâmica para 
atualização, correção de falhas de desenvolvimento 
e alteração funcional dos sistemas tornou estes 
dispositivos particularmente adequados para 
instalação em localizações remotas, inacessíveis ou 
de difícil acesso (e.g. off-shore, desertos, 
montanhas, espaço, fundo dos oceanos), ou em 
ambientes extremos. Neste artigo caracterizamos o 
perfil dinâmico das aplicações de controlo que 
podem tirar partido da capacidade de 
reconfiguração dinâmica presente nos mais recentes 
dispositivos FPGA. Os resultados de validação 
experimental descritos neste artigo demonstram que 
processos físicos com constantes de tempo acima 
dos 100ms podem extrair todos os benefícios da 
reconfiguração dinâmica, já após a sua instalação 
no terreno, sem risco de perda de controlo da 
aplicação física. 
 
 
1. Introdução 
 

Os dispositivos FPGA (Field Programmable 
Gate Arrays) têm vindo a tornar-se cada vez mais 
importantes no domínio dos sistemas embebidos, já 
que oferecem a possibilidade de modificação dos 
sistemas já após a sua instalação, a um custo mais 
baixo do que a substituição de hardware estático (ex: 
ASIC – Application Specific Integrated Circuit, ou 
sistemas baseados em microprocessador). Esta 
possibilidade é interessante não só durante a fase de 
prototipagem, na qual é importante poder 

rapidamente analisar e testar desenhos diferentes, 
mas também na fase de produção, onde tornam 
possível introduzir atualizações no sistema ou repor 
um estado anterior quando este já se encontra 
instalado a desempenhar a sua função. 

Avanços recentes desta tecnologia permitem 
reduzir significativamente o tempo necessário de 
modificação, recorrendo à reconfiguração de apenas 
uma parcela do sistema (reconfiguração parcial). 
Apesar desta possibilidade ser útil na fase de 
desenho e teste, é particularmente relevante quando 
o sistema já está em produção, uma vez que torna 
possível reduzir a indisponibilidade do sistema 
durante as atualizações. Além da reconfiguração 
parcial, a Xilinx introduziu recentemente a 
possibilidade de manter em execução a parcela do 
sistema que não esteja a ser reconfigurada durante o 
decorrer deste processo [1].  

Esta funcionalidade de reconfiguração dinâmica 
parcial poderá ser de especial interesse para os 
sistemas de controlo. A reconfiguração total de um 
dispositivo FPGA impõe uma indisponibilidade 
significativa ao sistema durante a reconfiguração, ao 
passo que a reconfiguração parcial é efetuada numa 
fração desse tempo. Caso seja possível reduzir 
significativamente esse tempo de reconfiguração, 
poderá ser viável desenhar um sistema de controlo 
que permita atualizações dinâmicas parciais, i.e. sem 
ser necessário parar a execução. 

Contudo, esta capacidade de atualizar ou 
refrescar um sistema de controlo baseado em 
tecnologia FPGA sem parar a sua execução, enfrenta 
diversos desafios, como a introdução de atrasos no 
sistema. O desafio principal consiste portanto em 
conseguir reduzir esse atraso ao mínimo 
indispensável, por forma a que o sistema controlado 
se mantenha num estado seguro, i.e. dentro do 
envelope de segurança das variáveis controladas. 

Este artigo tem como objetivo investigar se é 
possível, com a tecnologia atual, reconfigurar um 
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sistema em execução num dispositivo FPGA sem 
impor uma indisponibilidade que coloque em causa 
a segurança do sistema controlado [2]. Por outras 
palavras, o objetivo desta investigação é 
compreender se a reconfiguração dinâmica parcial 
de dispositivos FPGA permite efetuar atualizações 
em sistemas de controlo sem requerer a sua 
paragem. Para tal, o presente artigo analisa os 
detalhes envolvidos na reconfiguração dinâmica 
parcial de dispositivos FPGA, compara os 
resultados, em termos de indisponibilidade, com a 
reconfiguração total (que representa a abordagem 
mais comum), e verifica o impacto que estes 
procedimentos poderão ter nos sistemas controlados. 

O artigo está organizado da seguinte forma. Na 
Secção 2 descreve-se em detalhe o estado da arte na 
reconfiguração de dispositivos FPGA. Na Secção 3 
apresentam-se as arquiteturas dos sistemas com os 
dois tipos de reconfiguração em estudo enquanto que 
na Secção 4 caracterizam-se os sistemas de controlo 
contínuo. Na secção 5 apresentam-se os testes 
efectuados e os resultados obtidos. O artigo encerra 
com uma síntese das principais conclusões e linhas 
de trabalho futuro. 
 
2. Reconfiguração de Dispositivos FPGA 
 

Um dispositivo FPGA baseado em SRAM é 
composto por uma matriz de blocos lógicos 
configuráveis, interligados através de elementos de 
encaminhamento, com possibilidades de 
armazenamento interno e mecanismos de entrada e 
saída. Cada dispositivo contém uma memória de 
configuração que consiste em memória SRAM 
contendo a lógica do circuito e o encaminhamento 
necessário. Sempre que o dispositivo é inicializado, 
a memória de configuração é programada através de 
um bitstream, uma sequência de bits com os dados 
de configuração do FPGA, habitualmente gerado por 
uma ferramenta de desenho de hardware e 
armazenado num dispositivo flash. 

Na sua forma mais simples, a programação de 
um FPGA é levada a cabo através de uma 
reconfiguração total do circuito, i.e., uma escrita da 
totalidade da memória de configuração a partir do 
conteúdo da memória flash. No entanto, os 
fabricantes de dispositivos FPGA desenvolveram a 
possibilidade de reconfiguração parcial dos 
circuitos, permitindo reduzir significativamente o 
tempo necessário para a reprogramação, sempre que 
seja necessário atualizar apenas uma parte da 
memória de configuração. 

A esta funcionalidade foi acrescentada a 
possibilidade de reconfigurar parcialmente um 
dispositivo FPGA sem parar a sua execução. Esta 
funcionalidade, denominada reconfiguração parcial 
dinâmica, permite reprogramar parcialmente a 
memória de configuração, enquanto outros módulos 

prosseguem a sua execução dentro do mesmo 
dispositivo FPGA [3], [4], [5]. A reconfiguração 
parcial dinâmica pode ser efetuada através de um 
porto externo bem como através de um porto interno 
(o ICAP – Internal Configuration Access Port) que 
possibilita a auto-reconfiguração de um circuito. 

Ao permitir alterar a funcionalidade de um 
dispositivo FPGA durante a execução do sistema, a 
reconfiguração parcial dinâmica abre a possibilidade 
de atualizar bem como refrescar a lógica de um 
sistema de controlo sem que este pare a execução. 
Adicionalmente, torna-se possível reduzir o espaço 
ocupado no dispositivo FPGA nos casos em que 
nem todos os módulos tenham de executar em 
simultâneo, multiplexando no tempo o hardware, i.e. 
mantendo na sua memória apenas os módulos que 
estão em funcionamento [6]. 

Os desenvolvimentos que permitiram não só 
reconfigurar uma fração da memória de 
configuração, mas também fazê-lo sem parar a 
execução do sistema, criaram assim a possibilidade 
de atualizar ou refrescar um sistema de controlo 
durante a execução. No entanto, é necessário avaliar 
se os tempos envolvidos são suficientemente curtos 
para manter o sistema controlado num estado seguro 
e se é possível retomar a execução corretamente 
após a reconfiguração. Esta avaliação é o foco 
principal deste artigo. 

 
3. Arquitetura do Sistema 
 

Assumindo como objetivo principal a 
reconfiguração de um sistema de controlo baseado 
em FPGA, foram utilizadas duas abordagens 
consoante os meios utilizados para o efeito: 
reconfiguração total e reconfiguração dinâmica 
parcial [7]. Nesta secção descreve-se a arquitetura 
geral do sistema de controlo reconfigurável, com 
base num FPGA Virtex-5, da Xilinx [8]. 

Nas duas abordagens assume-se que o bitstream 
utilizado na reconfiguração se encontra armazenado 
num cartão de memória do tipo Compact Flash 
(CF).  

 
3.1. Reconfiguração Total 
 

A reconfiguração total do FPGA é realizada 
através de portos externos do dispositivo, 
normalmente por recurso a hardware adicional que 
possibilita a leitura do bitstream de uma memória 
flash e a reconfiguração do dispositivo. O processo é 
idêntico ao utilizado durante a fase de inicialização 
de dispositivos FPGA, baseados em SRAM. 

Na Fig. 1 é apresentada a arquitetura do sistema 
de reconfiguração total, onde podem observar-se os 
dispositivos externos, nomeadamente o controlador 
System ACE CF Controller e a memória flash, no 
formato CF.  
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O controlador System ACE CF Controller é 
responsável pela reconfiguração do sistema, i.e., 
leitura do bitstream da memória flash, e pela 
reconfiguração da totalidade da memória de 
configuração do FPGA, através do porto externo 
JTAG [9]. Apesar do bitstream do sistema de 
controlo ocupar uma pequena parte da memória de 
configuração, o tamanho do ficheiro gerado pelas 
ferramentas da Xilinx situa-se nos 3,8 MBytes, 
correspondente a toda a área do FPGA.  
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Fig. 1. Arquitetura do sistema de reconfiguração total com 
os dispositivos externos necessários. 

Houve ainda necessidade de adicionar um 
módulo STATE, externo ao FPGA, responsável pela 
manutenção do estado do sistema de controlo 
durante a sua reconfiguração. Este módulo, contendo 
um registo de memória, retém o estado do 
controlador para que, quando este for reiniciado, 
possa recuperar a partir do estado que estava em 
execução. 

3.2. Reconfiguração Dinâmica Parcial 
 

Ao contrário da abordagem anterior, onde é 
obrigatória a utilização de dispositivos externos ao 
FPGA, na reconfiguração dinâmica parcial é 
possível colocar os módulos de reconfiguração e de 
manutenção do estado do sistema de controlo dentro 
do FPGA, através da utilização de componentes 
estáticos.   

O sistema utilizado neste estudo é baseado num 
microprocessador (µP) Microblaze [10], [11] que 
comunica com um conjunto de módulos através de 
um bus local ao processador (PLB) – ver Fig. 2.  

O µP utiliza 64Kbytes de memória RAM para 
dados e instruções, implementada através de um 
conjunto de blocos de RAM (BRAM) do FPGA, e 
acessível através de um bus de acesso a memória 
local (LMB). Em execução no µP encontra-se um 
programa monitor, controlado através da porta série 
(RS232), que permite a reconfiguração do sistema 

de controlo com um bitstream carregado do CF, o 
controlo do estado interno do módulo de controlo, e 
ainda o acesso ao estado das entradas e saídas do 
módulo de controlo. 
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Fig. 2. Arquitetura do sistema de reconfiguração dinâmica 
parcial, interno ao FPGA. 

Foram também utilizados alguns módulos 
proprietários (IP Cores – Intellectual Property 
Cores), com interface PLB, fornecidos pela Xilinx 
[12], para facilitar a depuração e o acesso a 
dispositivos internos e externos necessários à 
reconfiguração, tais como: um módulo universal de 
comunicação assíncrona (UART) para interface 
entre o utilizador e a aplicação que se encontra em 
execução no µP (através de um terminal); um 
módulo de acesso a ficheiros em cartões de memória 
CF (SYSACE) para leitura do bitstream do sistema 
de controlo; um controlador de memórias externas 
(EMC) para acesso a um bloco de SRAM utilizado 
como cache para o bitstream parcial; e um módulo 
ICAP. 

Ao sistema base foi então adicionado um módulo 
IP proprietário, com interface PLB, que inclui o 
sistema de controlo e lógica adicional que possibilita 
a manutenção do estado durante a reconfiguração. O 
sistema de controlo encontra-se numa partição 
reconfigurável (RP) ao passo que o seu estado e o 
controlo das entradas e saídas [13], [14] estão numa 
zona estática (STATE & I/O). 

De entre os vários dispositivos externos 
acoplados ao FPGA, apenas o dispositivo de 
memória externa flash é essencial ao correto 
funcionamento dos FPGA baseadas em SRAM, 
devido à necessidade de configuração inicial do 
dispositivo. 

A utilização de um dispositivo de SRAM 
externo, como cache para o bitstream parcial, 
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permite reduzir os tempos de reconfiguração em 
uma ordem de grandeza, uma vez que o acesso ao 
dispositivo Compact Flash é bastante mais lento. 
Durante o arranque do sistema, o Microblaze é 
responsável pela leitura dos bitstreams parciais do 
CF e seu armazenamento na SRAM. Desta forma, a 
duração da reconfiguração parcial é 
substancialmente reduzida, uma vez que o bitstream 
a ser escrito na memória de configuração do FPGA é 
lido da SRAM, com tempos de acesso mais rápidos 
que os dos dispositivos baseados em memória flash 
(CF).    
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Fig. 3. Estrutura interna do módulo IP desenvolvido.  

O módulo IP Core desenvolvido (ver Fig. 3) está 
divido em duas partes: uma componente estática 
(STATIC LOGIC) e uma partição reconfigurável 
(RP – Reconfigurable Partition) [15], [16]. Na 
partição reconfigurável encontra-se o sistema de 
controlo, que efetua a leitura periódica dos sensores 
que adquirem o estado atual do sistema físico, 
calcula o estado seguinte do controlador e as ações 
de controlo, e aciona as saídas ligadas aos atuadores. 
Para preservar o estado do sistema de controlo 
durante o período de reconfiguração, este deve 
encontrar-se localizado externamente à partição 
reconfigurável, sendo a sua atualização inibida 
durante esse tempo. Assim, na componente estática 
do módulo encontram-se os registos de estado 
(STATE Register) e de acesso às entradas e saídas 
(I/O Register), que permitem despoletar a 
reconfiguração através de um sinal externo e o 
interface com o sistema a controlar. 

A configuração apresentada permite ao µP 
aceder ao estado do sistema de controlo, através do 
mapeamento do registo de estado no seu espaço de 
endereçamento. É também possível aceder, da 
mesma forma, ao valor das entradas e saídas do 
sistema de controlo, para efeitos de monitorização, 
através do registo de entrada e saída.  

A reconfiguração da partição reconfigurável 
pode ser despoletada de duas formas: através de um 
sinal externo (designado por Input/Output na Fig. 2) 

ou por iniciativa do µP. Em qualquer das situações, é 
o µP que faz a leitura do bitstream parcial, 
armazenado no CF, e envia a informação ao módulo 
ICAP, responsável pela reconfiguração dinâmica 
parcial do FPGA. 

Na reconfiguração parcial são necessários dois 
ficheiros com bitstreams: um contendo apenas os 
dados da partição reconfigurável e outro que inclui 
os dados de todo o FPGA, i.e., todo o sistema 
embutido descrito em cima, incluindo a partição 
reconfigurável [17], [18]. Aquando do arranque do 
sistema, o controlador System ACE CF Controller lê 
o bitstream total do CF e configura todo o FPGA. 
Quando já se encontra em execução e há 
necessidade de atualizar ou repor um determinado 
sistema de controlo, o bitstream parcial é lido do CF 
pelo µP, através do módulo SYSACE e do 
controlador System ACE CF Controller, e é escrito 
na partição reconfigurável do IP Core proprietário, 
através do módulo ICAP. 

 
3.3. Análise Preliminar 
 

Na reconfiguração dinâmica parcial, como 
apenas se reconfigura parte da memória de 
configuração do dispositivo, torna-se possível 
reduzir o tempo de reconfiguração, não só pelo facto 
do tamanho do bitstream ser menor, mas porque 
utilizamos o porto de reconfiguração interno, ICAP, 
que funciona ao dobro da velocidade do porto 
externo mais rápido.  

Outra das vantagens da reconfiguração dinâmica 
parcial é a possibilidade de utilização de 
componentes estáticos, não reconfiguráveis, que se 
mantêm permanentemente em execução no 
dispositivo. Isto possibilita a construção de SoC 
(System on a Chip), onde componentes essenciais 
como sejam os módulos de reconfiguração, de 
armazenamento do estado e controlo das entradas e 
saídas, são internos ao FPGA e permanecem em 
execução durante o período de reconfiguração. A 
utilização de módulos externos, como foi o caso do 
módulo STATE criado para a reconfiguração total, é 
assim evitada. 
 
4. Sistemas de Controlo Contínuo 
 

Os sistemas de controlo contínuo são 
normalmente constituídos por um controlador (um 
computador digital) que monitoriza periodicamente 
o processo controlado (o sistema cuja atividade se 
pretende regular), compara as suas saídas com 
valores de referência, calcula as ações de controlo 
adequadas e atua sobre o processo de modo a que 
este cumpra as suas funções da forma esperada.  

A monitorização do processo controlado é 
realizada periodicamente devido ao facto de, 
tratando-se de processos contínuos, a discretização 
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do estado do processo para cálculo das ações de 
controlo ficar desatualizada com a passagem do 
tempo, sendo por isso necessário refrescá-las dentro 
de um determinado período de tempo. A duração 
deste período de amostragem deve ser tal que a 
amostra do estado do processo adquirida pelo 
controlador não fique demasiado desatualizada. É 
fácil assim compreender que tal depende da 
dinâmica dos processos controlados. O cálculo do 
período de amostragem é usualmente efetuado de 
uma forma conservadora (over-sampling), usando 
regras empíricas (é comum adotarem-se valores 10 
vezes inferiores à constante de tempo mais rápida do 
processo [19], [20]). Valores típicos para períodos 
de amostragem situam-se entre alguns milissegundos 
e algumas centenas de milissegundos. 

Dado que a frequência de amostragem assume 
valores mais elevados do que seria estritamente 
necessário, a perda esporádica de uma amostra é  
impercetível no comportamento do processo 
controlado, sendo implicitamente tratada como 
qualquer perturbação externa que possa afetar o 
próprio sistema físico. Com efeito, uma vez que 
estes sistemas executam dentro de um ciclo fechado 
no qual o algoritmo de controlo é realimentado pelas 
saídas dos processos controlados, perturbações que 
afetem o processo controlado, tais como atritos, 
deslocações de ar, ou alterações da temperatura são 
consideradas como normais e tidas em conta pelo 
algoritmo de controlo. Falhas esporádicas nas ações 
de controlo são, de igual forma, toleradas pelo 
sistema. Tal foi observado em projetos realizados no 
passado com processos reais [21], [22].  

Pelo acima exposto, nas aplicações práticas é 
assumido que a inatividade do controlador durante 
um período de amostragem, não tem qualquer efeito 
no sistema controlado, isto é, na qualidade do 
serviço fornecido pelo controlador. No presente 
estudo utilizamos esta observação como majorante 
do tempo máximo de reconfiguração do FPGA do 
controlador. De assinalar que a state-of-practice 
aceita valores bem mais elevados, de duas, três ou 
mais omissões de controlo, desde que esporádicas, 
i.e. que ocorram depois do último glitch de controlo 
ter sido completamente absorvido pelo sistema. 

5. Testes e Resultados 
 

Para analisar a viabilidade da reconfiguração 
dinâmica de um sistema de controlo baseado num 
dispositivo FPGA é necessário analisar dois fatores: 
o tempo durante o qual o sistema controlado se 
encontra sem controlo, e o correto retomar da 
execução pelo controlador. De salientar que durante 
a reconfiguração parcial do sistema de controlo a 
saída do controlador mantém o último valor gerado. 
Desta forma, não haverá lugar a atrasos na ação de 
controlo (extensão do período de amostragem), mas 

sim omissão em caso de demora na reconfiguração 
do controlador (a saída do controlador será 
atualizada num instante de amostragem posterior). 

Com este intuito, ao invés de utilizar um 
algoritmo de controlo de alguma forma 
condicionado a uma aplicação específica utilizámos 
um sistema onde o tempo de inatividade fosse 
medido com uma elevada precisão e a correta 
continuidade da operação fosse facilmente 
percetível: um gerador de sinal em dente de serra.  

 
5.1. Descrição do Dente de Serra 

 
O gerador de dente de serra executa a uma 

frequência de 100MHz e resolução de 32 bits (ver 
Fig. 4), gerando assim 2^32 diferentes tensões de 
saída a intervalos de 10 nanossegundos. Desta forma 
é possível medir experimentalmente o tempo 
necessário à atualização do sistema de controlo pelo 
desfasamento dos sinais gerados, antes e depois da 
reconfiguração. 

%*+4/

%*
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Fig. 4. Pormenor do sinal de saída do sistema de controlo 
– gerador de dente de serra, durante a reconfiguração 

dinâmica. 

5.2. Descrição das experiências 
 
As experiências foram levadas a cabo numa 

placa de desenvolvimento Digilent XUPV5, com um 
FPGA Xilinx Virtex-5 XC5VLX110T [23]. Foram 
utilizados dispositivos de entrada e saída (leds e 
interruptores, como entradas e saídas do sistema de 
controlo), um conversor UART de RS232 para TTL 
(para interface com o programa monitor em 
execução no µP), um dispositivo de memória CF 
(para armazenamento dos bitstreams) e uma 
memória SRAM (como dispositivo de cache para 
optimização dos acessos ao CF).  

Para as medições foi utilizado um analisador 
lógico Hewlett Packard 1651B, com precisão 
máxima de 10ns, correspondente ao período de 
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relógio do microprocessador com frequência de 
100MHz.  

Nos testes ao sistema de reconfiguração total 
foram medidos os tempos desde a asserção do sinal 
de SYSACE RST do controlador System ACE CF 
Controller (que provoca a reconfiguração total da 
memória de configuração do FPGA com o bitstream 
do sistema de controlo, contido no cartão CF), até à 
deteção do início do dente de serra nas saídas do 
sistema de controlo. 

Nos testes ao sistema de reconfiguração 
dinâmica parcial, com o microprocessador e bus 
PLB a funcionarem à frequência de 100MHz, foram 
medidos os períodos de tempo em que a saída do 
sistema de controlo ficou estacionária. Este tempo 
corresponde ao tempo máximo necessário à 
reconfiguração do sistema de controlo e inclui: a 
desativação da atualização do estado pelo sistema de 
controlo, a reconfiguração da partição 
reconfigurável e a ativação da atualização do estado. 

Com o intuito de perceber a correlação entre a 
dimensão do bitstream e o tempo de reconfiguração, 
foram construídos mais 3 sistemas de controlo com a 
mesma funcionalidade, mas com dimensões da 
partição reconfigurável 5, 10 e 20 vezes superiores 
às do sistema original, gerando os bitstream 
descritos na secção seguinte (ver Tabela 1).  

 
5.3. Resultados 

 
Na Tabela 1 são apresentados os resultados das 

reconfigurações total (RT) e dinâmica parcial (RDP) 
de um sistema de controlo com diferentes 
necessidades em termos de recursos lógicos do 
FPGA, e portanto na dimensão do ficheiro bitstream 
associado. 

 

Exp. Tamanho 
bitstream 

RT 

Flash 

RDP 
Flash SRAM 

1 30.256 bytes 1.380ms 74,4ms 9,6ms 
2 72.768 bytes --- 168ms 24ms 
3 119.000 bytes --- 270ms 40ms 
4 178.224 bytes --- 408ms 60ms 

Tabela 1. Resultados das experiências de Reconfiguração 
Total (RT) e de Reconfiguração Dinâmica Parcial (RDP) 

de um sistema de controlo num FPGA, em função do 
tamanho da Partição Reconfigurável (PR). 

Estes resultados mostram que, para a primeira 
experiência, a reconfiguração total demorou 
1380ms, enquanto a reconfiguração parcial foi 
realizada em 74,4ms tendo o bitstream sido 
carregado a partir de flash, e 9,6ms quando 
carregado a partir de SRAM. Por um lado, verifica-
se que existe um overhead no acesso ao cartão CF, 
externo ao FPGA, que não acontece na 
reconfiguração parcial a partir de SRAM. Por outro 

lado, na reconfiguração total o bitstream 
corresponde a dados de reconfiguração de todo o 
FPGA, e não apenas da componente reconfigurável.  

Esta é a razão pela qual, na coluna associada à 
reconfiguração total, apenas se apresenta o resultado 
para o bitstream original, dado que as ferramentas da 
Xilinx utilizadas geram bitstreams com a mesma 
dimensão, qualquer que seja o tamanho do código 
VHDL associado ao sistema de controlo.  

Para a reconfiguração dinâmica parcial 
obtiveram-se tamanhos diferentes do ficheiro 
bitstream, correspondentes a diferentes tamanhos da 
partição reconfigurável. 

Numa primeira análise aos tempos medidos, com 
recurso a um analisador lógico, podemos verificar, 
grosso modo, que o tempo necessário para a 
reconfiguração dinâmica parcial do FPGA a partir 
do bitstream em SRAM, em milissegundos, equivale 
a cerca de 1/3 do seu tamanho, em Kbytes. Esta 
correlação deverá ser analisada com mais detalhe, a 
partir de dados de mais experiências. 

Podemos, contudo, verificar que existe uma 
correspondência entre o tamanho da partição 
reconfigurável, diretamente relacionado com a 
lógica necessária à construção do sistema de 
controlo, e o tempo de reconfiguração necessário. 

 
6. Conclusões 
 

Neste artigo apresentámos os resultados 
experimentais da utilização de reconfiguração 
parcial dinâmica em FPGA no controlo de 
aplicações físicas. O objetivo foi avaliar a 
possibilidade de reconfigurar o dispositivo FPGA 
dinamicamente, em run-time, sem perder o controlo 
do processo controlado, o que ficou comprovado 
para cenários muito realistas. Para efeitos de 
precisão na medição do sinal de controlo analógico 
das saídas, utilizámos um gerador de onda em dente 
de serra, pois qualquer desvio é facilmente 
observável e mensurável com um analisador lógico. 
Comparámos dois sistemas, um utilizando 
reconfiguração total do FPGA e outro utilizando 
reconfiguração parcial apenas da zona do FPGA 
onde estava a lógica de geração dos outputs. 
Utilizámos ainda diferentes tamanhos para a partição 
reconfigurável, e localização do bitstream para 
reconfiguração do FPGA, em flash e pré-carregado 
em SRAM. 

Uma primeira análise permitiu confirmar uma 
diferença de 2 ordens de grandeza entre os tempos 
de reconfiguração parcial e total do FPGA, pelo 
simples facto da área a reconfigurar poder ser 
substancialmente inferior. Por outro lado, pudemos 
verificar que existe uma grande vantagem em 
carregar previamente o bitstream para SRAM antes 
de efetuar a reconfiguração parcial, eliminando o 
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overhead no acesso ao cartão CF, diminuindo o 
tempo total em cerca de 7 vezes. 

A partir destes resultados experimentais, 
verificámos ainda que o tempo de reconfiguração 
parcial do FPGA a partir de um bitstream situado em 
SRAM, em milissegundos, corresponde a cerca de 
1/3 do tamanho do bitstream em KBytes. Assim é 
possível, a partir da constante de tempo do processo 
controlado, calcular a área máxima que é possível 
disponibilizar dentro da partição reconfigurável do 
FPGA para a lógica do controlador. Por exemplo, 
um sistema que tenha uma constante de tempo de 
100ms (a esmagadora maioria dos processos 
industriais tem constantes de tempo bastante 
superiores) tolera um tempo de reconfiguração de 
10ms, possibilitando assim que a lógica do sistema 
de controlo ocupe um bitstream de cerca de 
30Kbytes.  

Com o intuito de aplicar esta tecnologia a um 
sistema real, encontra-se em desenvolvimento um 
controlador para um sistema de cruise control com 
possibilidade de atualização em funcionamento. Este 
sistema é composto por um motor DC, um encoder 
óptico de elevada resolução e um controlador PID 
reconfigurável. Atendendo ao facto de grande parte 
dos sistemas de controlo serem modulares, também 
se irá explorar a possibilidade de reconfiguração por 
módulos, permitindo manter os tempos de 
reconfiguração em valores aceitáveis para 
controladores mais complexos.  

No seguimento deste trabalho e com o intuito de 
alargar a sua aplicação a um maior número de 
sistemas de controlo, com requisitos temporais mais 
estritos, optar-se-á por acrescentar um sistema 
redundante em espera ativa (passando a utilizar duas 
partições reconfiguráveis) com o objetivo não só de 
assegurar uma rápida transferência para o novo 
sistema de controlo, mas também para validar à 
priori o seu correto funcionamento. 
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Abstract

The main goal of this work is to build an hardware-
aided autonomous navigation system based on real-time
stereo images and to study Partial Reconfiguration aspects
applied to the system. The system is built on an recon-
figurable embedded development platform consisting of an
IBM PowerPC 440 processor embedded in a Xilinx Virtex-
5 FPGA to accelerate the most critical task. Three Recon-
figurable Units were incorporated in the designed system
architecture. The dynamic adjustment of system’s quality
of service was achieved by using different reconfiguration
strategies to match vehicle speed. A speedup of 2 times for
the critical task was obtained, compared with a software-
only version. For larger images, the same implementation
would achieve an estimated speedup of 2.5 times.

1. Introduction

The performance expected from complex real-time em-
bedded systems has been increasing more and more. The
application presented in this work is a good example of
such a system. It uses a complex autonomous navigation
algorithm for guiding a small robot using information ob-
tained from a pair of cameras. Since the computational ef-
fort is significant for an embedded system, a previous soft-
ware/hardware partitioning step identified the critical task
and proposed its implementation in hardware.

Modern platform FPGAs like the Virtex-5 (from Xilinx)
can combine the flexibility of software running on an em-
bedded processor (a PowerPC processor in this case) with
the performance of dedicated hardware support. The main
objectives of the work described here are to evaluate the
application of dynamic partial reconfiguration (DPR) [1]
by designing and building and assessing a prototype. This
subject is one of the case studies proposed by the Euro-
pean consortium REFLECT project, which also provided
the original application software written in C language.

The paper is organized as follows: Section 2 briefly pro-
vides some background information, while Sect. 3 gives
an overview on the application under study. Section 4 de-
scribes the structure of the critical task to be accelerated.
The system and strategies used for the evaluation of DPR

are described in Sect. 5, while Sect. 6 discusses the results.
Section 7 concludes the paper.

2. Background

Reconfigurable systems combine two main key con-
cepts in embedded technology: Parallelism, which is the
biggest advantage of hardware computing, as provided by
Application-Specific Integrated Circuits (ASICs), and flex-
ibility, the main reason for the success of software applica-
tions run by General Propose Processors (GPPs).

The concept of reconfigurable system is breaking the
barrier between these two types of devices. This allowed
the combination of the particularities of both and elevate
the concept of embedded system to a new level, creating
new types of compromise between the software and the
hardware infrastructure. A reconfigurable embedded sys-
tem allows portions of the system’s hardware to be modi-
fied, thereby changing system’s hardware-accelerated fea-
tures depending on the need of the application executed by
the GPP. This feature offers a new degree of flexibility to
the embedded system, where the execution of more tasks in
hardware provides a multi-level acceleration that is difficult
to obtain by a fixed-functionality circuit.

The state of the art reconfiguration technology, the Dy-
namic Partial Reconfiguration, allows FPGA regions to be
changed at run-time, without interrupting the GPP, or rest
of the hardware execution. Fig. 1 shows an example of a
partial reconfiguration system, where the hardware part of
the system is composed of four modules that execute HW-
accelerated tasks. In this example, two of them are remain
fixed, executing functions that requires permanent avail-
ability, whereas the remaining blocks are reconfigurable
modules. For the example, function C can the exchanged
with function D, since the have been designed to use the
same reconfigurable region; the same applies to functions
E and F, but for a different reconfigurable region.

The compliance with this technology has some costs.
For instance, the design flow for reconfigurable systems
followed by the Xilinx EDK1 [2] requires some effort to
design compatible interfaces between reconfigurable mod-
ules for a particular region.

The major drawback of dynamic reconfiguration is the
1EDK - Embedded Development Kit.
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Figure 1. Dynamic Partial Reconfiguration System.

reconfiguration time, which directly depends on partial bit-
stream2 data transfer time. Since the bitstream size is pro-
portional to the FPGA area to be configured, it is important
to keep it as small as possible for minimum impact on the
system’s performance. Other aspects like task scheduling
or reconfigurable strategies have to be taken into consider-
ation when using DPR.

An analysis of the use cases applicable to assembly of
a reconfigurable system for implementation of a Software
Defined Radio is made by [3], where several reconfigura-
tion strategies are evaluated. The study shows that total
flexibility of reconfiguration is achieved with a reasonable
implementation complexity.

In [4] dynamic reconfiguration is applied to two differ-
ent types of navigation systems, and an analysis of the use
cases is also made. Several techniques dealing with dy-
namic reconfiguration of software for robots are discussed
and implemented. The results shows that the system effi-
ciency is very intertwined with the techniques of interaction
between processing objects.

3. Embedded Application

The Stereo Navigation application used in this work
supports localization mechanisms like Global Navigation
Satellite Systems (GNSS) in vehicles where this service is
temporarily unavailable. Two cameras pointed in the same
direction capture the scenery ahead of the vehicle at the
same instant, forming a stereo image. From the process-
ing of stereo images in consecutive instants, the embedded
system can determine vehicle rotation and translation ma-
trices.

The main loop of the Stereo Navigation algorithm com-
prises the following steps:

Image rectification Eliminates image distortions caused
by the lens surface.

Feature extraction Detects characteristics of a given im-
age using the Harris Corner Detector algorithm [5].

Feature matching Searches correspondences between the
features of the stereo image belonging to consecutive
instants.

2Bitstream - Stream of data containing information of FPGA internal
logic cells end routing configuration.
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Algorithm

3D Reprojection Analytically calculates the three-
dimensional coordinates of a point from two-
dimensional images.

Robust pose estimation - Runs the RANSAC algorithm
[6] to separate relevant inlier image features from out-
liers. In each loop iteration a Singular Vector Decom-
position (SVD) algorithm computes a vehicle rotation
matrix and a translation vector.

4. Critical Task: Feature Extraction

From the analysis of the run-time behavior of the ap-
plication, combined with the information provided in pre-
vious works [7, 8], it follows that feature extraction is the
most time consuming processing task. This task is respon-
sible for detecting relevant image features using the Harris
Corner Detector algorithm and is executed once for each
96× 96 pixel block of both left and right images. Twelve
blocks are processed per image, 24 for the stereo image.

4.1. Computation Flow

As shown in Fig. 2, each execution of the algo-
rithm comprises eight 2-D convolution operations: 2 ×
ConvConst, 3×ConvRepl1 and 3×ConvRepl2.

All the convolution operations are based on Eq. 1, where
the result of multiply-accumulate (MAC) operations be-
tween matrix filter h (size 3×3) and each input element
present in array u (of size 96×96) is stored in the output
matrix y (also of size 96×96).

accn = u[i]×h[ j]+accn−1 (1)
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ConvConst This procedure convolves the frame with a
3×3 horizontal (Eq. 2) and a vertical (Eq. 3) Prewitt filter.
This function receives and produces only integer values.

H =




1 1 1
0 0 0
-1 -1 -1



 (2)

V =




1 0 -1
1 0 -1
1 0 -1



 (3)

ConvRepl1 This procedure computes a convolution be-
tween the result of ConvConst and a 1 × 11 horizontal
Gaussian filter. This function receives only integer values,
but produces single-precision floating-point values.

ConvRepl2 The procedure computes a convolution be-
tween the result from ConvRepl1 and a 11 × 1 vertical
Gaussian filter. This function receives and produces only
floating-point values.

4.2. Hardware Implementation

To quickly implement each critical subtask in hardware,
we used the academic version of the high-level synthesis
tool Catapult C, which synthesizes C code to RTL-level de-
scriptions (in Verilog). However, this tool is unable to gen-
erate hardware blocks for floating-point arithmetic (only
fixed-point versions can be synthesized, but no data range
analysis is performed).

To solve this issue, two possible solutions were consid-
ered: synthesizing SoftFloat routines [9], or usinh a fixed-
point equivalent version. Both alternatives employ 32-bit
data types. The first one is a faithful software implemen-
tation of the floating-point data-type defined by the IEEE-
754 standard [10]. Its hardware implementation running at
100 MHz resulted in an execution time improvement for
the ConvRepl1 and ConvRepl2 functions of just 8 % when
compared to the original versions in software (running on
the embedded PowerPC with a Floating-Point Unit (FPU)).

The second solution is a specially crafted design, which
combines hardware and software fixed-point adjustments
to minimize precision loss. Data validation of this approach
was carried out for the worst case scenario. Running at
the same frequency of 100 MHz, this solution resulted in
a execution time improvement by a factor of 4 for each of
the three functions, as shown on Fig. 3. This solution was
adopted for the final implementation.

The hardware implementation process comprised sev-
eral software tool flows and methodologies. After using
Catapult C to create the Verilog files, these were synthe-
sized using XST (from Xilinx). The first step involves the
synthesis of the system’s static part, which includes user
peripherals with black-box modules that match the inter-
face of the reconfigurable modules (RM). (This step is car-
ried out with Xilinx XPS). The other step involves the the
individual synthesis of the RMs directly with Xilinx ISE.

Figure 3. Critical task hardware acceleration (hand-
crafted solution)

(Interfaces only)

Timing control logic and data transfer

reconfig_unit.vhd

Interrupt
Service

Soft-reset

PLB
Interface

user_logic.v

TDP_89x32.v

TDP_9216x32.v

reconfig_module.v

TDP_9216x32.v

Figure 4. Reconfigurable unit peripheral

The synthesis steps produce gate-level netlists in NGC
format (a Xilinx native format) for the static part of the
design and each reconfigurable module, respectively. Fi-
nally the hardware implementation is completed with Xil-
inx PlanAhead tool, which is used for the physical defini-
tion of the reconfigurable areas and to manage the physical
synthesis process. Each hardware accelerator must be un-
dergo physical synthesis for each reconfigurable area where
it may be used.

5. Reconfigurable System Design

5.1. Reconfigurable Unit

The Reconfigurable Unit is the peripheral designed to
provide to the system the ability to change hardware func-
tionality at run-time. It was created to host any of the mod-
ules created by Catapult C. The Reconfigurable Unit (RU)
shown in Fig. 4 includes Block RAMs memory for U , H
and Y matrix storage, processor local bus (PLB) connectiv-
ity, support for services such as system interrupt and burst
data transfer, and the area for one Reconfigurable Module
(RM).

5.2. System Architecture

A reconfigurable embedded system was designed with
the architecture shown in Fig. 5. In addition to the proces-
sor and system RAM memory, it also contains: FPU for
software acceleration; SysAce controller to load bitstreams
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Table 1. Resource usage for reconfigurable modules

Function
LUTs CLBs FF-D DSP48E
(%) (%) (%) (%)

ConvConst 2.77 2.77 2.58 2.34
ConvRepl1 1.77 1.95 1.94 3.12
ConvRepl2 2.59 2.60 2.17 3.12

D
D

R
2

(2
56

M
B)

PPC 440

FPU

INTC

Central
DMA

UART

SysACE

MPMC

PL
B

v4
.6

HwICAP
ICAP

BRAM
H

BRAM
U

BRAM
Y

Reconfigurable Unit 0

Reconfigurable
Module

BRAM
H

BRAM
U

BRAM
Y

Reconfigurable Unit 1

Reconfigurable
Module

BRAM
H

BRAM
U

BRAM
Y

Reconfigurable Unit 2
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Figure 5. Implemented System Architecture.

from CompactFlash card; UART controller for terminal ac-
cess; Central DMA to handle data transfer tasks; System
Interrupt controller for event notification; HWICAP con-
troller for partial bitstream download; three reconfigurable
units, each with one RM. Each RM area uses 13 Virtex-5
frames of a single clock region. The total bistream size is
about 74 KB. The resource usage for one RM is presented
in Tab. 1.

5.3. Reconfiguration Strategies

Given the number of RUs in the system, three types
of reconfiguration strategies where considered, each using
one, two or three RUs, and associated with different speed
requirement.

One RU For this strategy, the system uses just one RU.
Each RM has to be sequentially configured with one of the
accelerators as shown in Fig. 6. White blocks correspond
to the execution of each convolution task, while the darker
blocks correspond to the reconfiguration operations. The
arrows indicate data flow dependencies.

Two RUs In this case, the system uses two RUs in a ping-
pong fashion, as presented inn Fig. 7. When an accelerator
is executing in one of the RUs, the other RU is simultane-
ously being configured with another accelerator.

ConvConst1.

2.

3.

4.

5.

6.

7.

8.

ConvConst config.

ConvRepl1 config.

ConvRepl2 config.

ConvConst config.

ConvRepl1 config

ConvRepl2 config

ConvRepl1 config

ConvRepl2 config

ConvRepl1

ConvRepl2

ConvConst

ConvRepl1

ConvRepl2

ConvRepl1

ConvRepl2

Consecutive
processing

Figure 6. Single RU strategy.
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ConvRepl2ConvRepl2
Config.
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Config. ConvCo...

Figure 7. Ping-pong strategy (two RUs)

Three RUs Employing this strategy, each subtask (accel-
erator) is configured once in each individual RU, then ex-
ecuted in a sequential fixed fashion. This strategy has the
ability to dramatically reduce the number of reconfigura-
tions, as shown on Fig. 8. After feature extraction is com-
plete, the RUs can be reused for other purposes, if neces-
sary.

Three RUs – Pipelined Execution This is a pipelined
version of High Speed strategy. Fig. 9 shows that this tech-
nique is able to reduce the number of steps required for
task execution from 8 to 5. Note that the convolutions re-
sults data flow is the same as in the original version shown
in Fig. 2.

6. Discussion and Analysis

The collected measurements show that each HW recon-
figuration operation takes 5.37 ms, 4.5 times longer than
any executed function module. Due to this fact, only strate-
gies using three RUs could produce overall time execution
benefits, as shown on Fig. 10. This figure presents the rela-

ConvConst

Reconfig. Unit

ConvConst
Config.

ConvRepl1ConvRepl1
Config.

2

1

0
t

Co...ConvRepl2ConvRepl2
Config.

ConvConst

ConvRepl1

Figure 8. Scheduling with three RUs.
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Figure 10. Number of clock cycles (relative to soft-
ware execution)

tive execution time of Feature Extraction task for each im-
plemented strategy as compared to the original software ex-
ecution time. Time measurements were obtained by calcu-
lating the difference between time stamps created right be-
fore and after running the feature extraction task. The time
stamps are provided by an internal timer/counter (T/C) de-
vice, which is incremented on every processor clock tick
(2.5 ns).

Each read/write operation of 9216 32-bit words from/to
the U/Y BRAMs takes 0.52 ms. For the fastest configura-
tion, a maximum speed-up of 2 times was measured for the
feature extraction task.

Fig. 11 shows the global frame rate improvements con-
sidering the full processing time of each pair of stereo im-
ages. Not all the strategies can execute faster than the origi-
nal software. In fact, only strategies that use a fixed version
of each hardware module can accelerate the application ex-
ecution. The same figure shows that the software version
can process 0.5 stereo frames per second (SFPS), i.e., one
stereo image per two seconds. For each DPR strategy, the
table also shows the SFPS rate and the relative improve-
ment versus the original software version. The best DPR
strategy results show that the image rate can be increased
to 0.6 SFPS.

Table 2 shows in more detail the best obtained results

Figure 11. Rating of Stereo-FPS (SFPS).

Table 2. Original Software version vs. Best Hardware
Strategy (SFPS: stereo frames per second)

Analysed Section Original ver. Super Speed ver.
(SW exec.) (3 HW RUs)

Feature Extraction ∼650 ms
∼475 ms

Execution Task (-26.7%)
Stereo Image ∼2018 ms

∼1680 ms
Process Time (-16.7%)
Stereo Image ∼0.50 SFPS

∼0.60 SFPS
Rate (+20%)

using hardware DPR compared with original software-
only execution times. In software, feature extraction
takes 650 ms; the best version with hardware support runs
in 475 ms, which correspond to a reduction of 26.7 %
(speedup of 1.37). This task reduction fraction translates
to a global execution time decrease for the whole aplica-
tion of 16.7 % from 2018 ms to 1680 ms (a speedup of 1.2).
This time corresponds to the stereo image processing rate
of Fig. 11.

The speedup obtained when operating over bigger im-
ages was also estimated. The original embedded applica-
tion operated only over images with 320×240 pixels. For
this resolution, the duration of every reconfiguration oper-
ation, data transfer and computation involved in the feature
extraction task was measured. These values were used to-
gether with data from the desktop version of the application
to estimate the speedup that would be obtained by the em-
bedded version for images of size 640×480 was estimated.
The desktop version takes 4.54 times longer on the larger
images than on the smaller ones. Combining this informa-
tion, we estimated the speedup of the embedded DPR sys-
tem on larger images to be 2.5 (for the feature extraction
task).

7. Conclusions

The design and implementation of a DPR embedded
system has been successfully completed. The implementa-
tion of an FPGA-autonomous navigation algorithm which
dynamically adapts to system requirements was success-
fully achieved. Using DPR techniques, an effective exe-
cution time improvement of the Stereo Navigation applica-
tion was achieved. The experience acquired in modifying
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the application for dynamic reconfiguration will be used to
devise automatic methods for carrying them out using the
LARA toolchain [11].

The tradeoff between bitstream size and number of re-
configuration operations is the critical aspect of reconfig-
urable real-time embedded systems. Lowering both can of-
fer great acceleration solutions, but this might not always
be possible. The study of the application of DPR strategies
to the feature extraction task shows that the nature of this
particular task is not the most appropriate for reconfigura-
tion, because each hardware-accelerated subtask has a sig-
nificant reconfiguration time (proportional to the bitstream
size). In addition, the number of sub-task executions per
image is high, leading to a high number of reconfigura-
tions when using one or two RUs. Enhancing the recon-
figuration process, particularly the HwICAP communica-
tion interface, together with a more optimized synthesis of
the reconfigurable modules to obtain resulting smaller bit-
streams, has the potential to offer even better system per-
formance.
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